【动态规划】最大和子矩阵

问题描述

有一个正整数和负整数组成的NxN矩阵,请编写代码找出元素总和最大的子矩阵。请尝试使用一个高效算法。

给定一个int矩阵mat和矩阵的阶数n,请返回元素总和最大的子矩阵的元素之和。保证元素绝对值小于等于100000,且矩阵阶数小于等于200。

测试样例:
[[1,2,-3],[3,4,-5],[-5,-6,-7]],3
返回:10

 

将二维数据拆分为一维数据连续子数组和,算法复杂度 O(N^3)

public static int maxSum(int[][] array){
	if(null == array || array.length == 0){
		return 0;
	}

	int[][] colSum = new int[array.length][array[0].length];
	for(int i = 0; i < array.length; i++){
		for(int j = 0; j < array[0].length; j++){
			colSum[i][j] = i == 0 ? array[i][j] : (array[i][j] + colSum[i - 1][j]);
		}
	}

	int maxSum = array[0][0];
	int[] tmpColSum = new int[array[0].length];
	for(int i = 0; i < array.length; i++){
		for(int j = i; j < array.length; j++){
			if(i == 0){
				maxSum = Math.max(maxSum, maxSum(colSum[j]));
			}else{
				//重置tmp数组 j 行减去 i - 1行
				for(int t = 0; t < array[0].length; t++){
					tmpColSum[t] = colSum[j][t] - colSum[i - 1][t];
				}

				maxSum = Math.max(maxSum, maxSum(tmpColSum));
			}
		}
	}

	return maxSum;
}


//一位数组求最大连续子数组和
public static int maxSum(int[] array){
	if(null == array || array.length == 0){
		return 0;
	}

	int tmp = array[0];
	int max = array[0];
	for(int i = 1; i < array.length; i++){
		if(tmp < 0){
			tmp = 0;
		}

		tmp += array[i];
		max = Math.max(max, tmp);
	}

	return max;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值