有个经典的动态规划题目,就是求连续子数组的最大和,那是一维的情况,如果推广到二维呢?这就产生了另一个经典的动态规划题目——子矩阵最大和,就是输入一个m*n的矩阵,找出在矩阵中,所有元素加起来之和最大的子矩阵。
例如在 0 -2 -7 0 这样一个4*4的矩阵中,元素之和最大的子矩阵为 9 2,它们之和为15。
9 2 -6 2 -4 1
-4 1 -4 1 -1 8
-1 8 0 -2
这道题最直观的思路当然是暴力解法,但需要遍历所有的子数组求和,时间复杂度,想到一维的情况,时间复杂度是O(n),是否能用类似的思路降低二维情况的时间复杂度,答案是肯定的。
一个m×n的矩阵matrix的子矩阵行数j满足1 ≤ j ≤ m,考虑第0到第j-1行的子矩阵,最多有n列,我们不考虑子矩阵的列数,先分别将每列的第0~j-1行的元素求和,这样就得到了一个长度为n的数组,是不是就可以按照一维的情况进行动态规划了?最终得到的结果就是元素(0, 0)到元素(j - 1, n)这个范围内所有行数为j的子矩阵的最大和。以此类推,可以对所有可能的行数的子矩阵分别求出最大和,再取出其中最大的就是题目需要的结果。
对于行数j的子矩阵,不考虑列数,可能的组合有m-j+1种,因此整个[1, m]区间总的组合数是m(m+1)/2,再考虑对每个长度为n的数组做动态规划,最终的时间复杂度是