有个经典的动态规划题目,就是求连续子数组的最大和,那是一维的情况,如果推广到二维呢?这就产生了另一个经典的动态规划题目——子矩阵最大和,就是输入一个m*n的矩阵,找出在矩阵中,所有元素加起来之和最大的子矩阵。
例如在 0 -2 -7 0 这样一个4*4的矩阵中,元素之和最大的子矩阵为 9 2,它们之和为15。
9 2 -6 2 -4 1
-4 1 -4 1 -1 8
-1 8 0 -2
这道题最直观的思路当然是暴力解法,但需要遍历所有的子数组求和,时间复杂度,想到一维的情况,时间复杂度是O(n),是否能用类似的思路降低二维情况的时间复杂度,答案是肯定的。
一个m×n的矩阵matrix的子矩阵行数j满足1 ≤ j ≤ m,考虑第0到第j-1行的子矩阵,最多有n列,我们不考虑子矩阵的列数,先分别将每列的第0~j-1行的元素求和,这样就得到了一个长度为n的数组,是不是就可以按照一维的情况进行动态规划了?最终得到的结果就是元素(0, 0)到元素(j - 1, n)这个范围内所有行数为j的子矩阵的最大和。以此类推,可以对所有可能的行数的子矩阵分别求出最大和,再取出其中最大的就是题目需要的结果。
对于行数j的子矩阵,不考虑列数,可能的组合有m-j+1种,因此整个[1, m]区间总的组合数是m(m+1)/2,再考虑对每个长度为n的数组做动态规划,最终的时间复杂度是。类似的,也可以按列进行动态规划,此时的时间复杂度为

本文探讨了如何使用动态规划解决二维矩阵中寻找元素和最大的子矩阵问题。通过对每列的行求和,然后应用动态规划降低时间复杂度,避免了暴力遍历所有子数组。当m(行数)小于n(列数)时,按行处理,反之则按列处理。同时,通过预计算每列的行累计和,可以快速计算子矩阵和,进一步提高效率。
最低0.47元/天 解锁文章
907

被折叠的 条评论
为什么被折叠?



