题目:
给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?
示例:
输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
思路:网上找的大神的代买,原文链接:https://blog.csdn.net/qq_38595487/article/details/79598628。这个题和之前的95题应该是一系列的,但是可能比上一个简单一点。先看看这个题看看对理解之前的题有没有帮助。
给出n个节点,主要看着n个节点可以组成多少个形式的二叉搜索树。由二叉搜索树的性质可知,对于一个根节点x来说,左子树全部小于等于x,右子树全部大于x.还有一个规律,这棵树的不同形态的二叉查找树的个数,就是根节点的 左子树的个数*右子树的个数.
可以使用动态规划,从前到后计算出当有i个节点时,它有多少种不同形态的树。nums[i] += nums[j] * nums[i-1-j] 。当节点数为0时,有一种(空的树);当节点数为1时,有一种。
我自己跟着递推公式写代码都不是很简单,刚开始理解不了递推公式后来想清楚了。使用数组dp[i]表示i个节点存在二叉排序树的个数。当i=n时,可以这样想,假设以1作为根节点,则此时左节点只能为0,右节点剩下n-1个节点,即dp[0]*dp[n-1];以2为根节点时,左子树有1个节点,右子树有n-2个节点,依次类推,可得到dp[n]=dp[0]dp[n-1]+dp[1]dp[n-2]+...+dp[n-1]dp[0].得到动态规划的递推公式。
代码:
class Solution {
public int numTrees(int n) {
if (n == 0)return 0;
if (n == 1) return 1;
int[] nums = new int[n+1];
nums[0] = 1; nums[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 0; j < i; j++) {
nums[i] = nums[i] + nums[j] * nums[i-1-j];
}
}
return nums[n];
}
}
这个是我自己根据递推公式写的代码:
class Solution {
public int numTrees(int n) {
if(n<0)
return 0;
if(n==0)
return 1;
if(n==1)
return 1;
int dp[]=new int[n+1];
dp[0]=1;
dp[1]=1;
for(int i=2;i<=n;i++){
for(int j=0;j<=i-1;j++){
dp[i]=dp[j]*dp[i-1-j]+dp[i];
}
}
return dp[n];
}
}