leetcode笔记——96不同的二叉搜索树

题目:

给定一个整数 n,求以 1 ... n 为节点组成的二叉搜索树有多少种?

示例:

输入: 3
输出: 5
解释:
给定 n = 3, 一共有 5 种不同结构的二叉搜索树:

   1         3     3      2      1
    \       /     /      / \      \
     3     2     1      1   3      2
    /     /       \                 \
   2     1         2                 3

思路:网上找的大神的代买,原文链接:https://blog.csdn.net/qq_38595487/article/details/79598628。这个题和之前的95题应该是一系列的,但是可能比上一个简单一点。先看看这个题看看对理解之前的题有没有帮助。

给出n个节点,主要看着n个节点可以组成多少个形式的二叉搜索树。由二叉搜索树的性质可知,对于一个根节点x来说,左子树全部小于等于x,右子树全部大于x.还有一个规律,这棵树的不同形态的二叉查找树的个数,就是根节点的  左子树的个数*右子树的个数.
可以使用动态规划,从前到后计算出当有i个节点时,它有多少种不同形态的树。nums[i] += nums[j] * nums[i-1-j]  。当节点数为0时,有一种(空的树);当节点数为1时,有一种。
我自己跟着递推公式写代码都不是很简单,刚开始理解不了递推公式后来想清楚了。使用数组dp[i]表示i个节点存在二叉排序树的个数。当i=n时,可以这样想,假设以1作为根节点,则此时左节点只能为0,右节点剩下n-1个节点,即dp[0]*dp[n-1];以2为根节点时,左子树有1个节点,右子树有n-2个节点,依次类推,可得到dp[n]=dp[0]dp[n-1]+dp[1]dp[n-2]+...+dp[n-1]dp[0].得到动态规划的递推公式。

代码:

class Solution {
    public int numTrees(int n) {
        if (n == 0)return 0;
        if (n == 1) return 1;
 
        int[] nums = new int[n+1];
        nums[0] = 1; nums[1] = 1;
 
        for (int i = 2; i <= n; i++) {
            for (int j = 0; j < i; j++) {
                nums[i] = nums[i] + nums[j] * nums[i-1-j];
            }
        }
        return nums[n];
 
    }
}

这个是我自己根据递推公式写的代码:

class Solution {
    public int numTrees(int n) {
        if(n<0)
            return 0;
        if(n==0)
            return 1;
        if(n==1)
            return 1;
        int dp[]=new int[n+1];
        dp[0]=1;
            dp[1]=1;
            for(int i=2;i<=n;i++){
                for(int j=0;j<=i-1;j++){
              dp[i]=dp[j]*dp[i-1-j]+dp[i];
             
            }
            }
        
        return dp[n];
        
        
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值