mysql数据库连接超过8小时失效的解决方案(springboot)

1,mysql数据库连接超过8小时失效的解决方案(springboot) https://blog.csdn.net/u012859681/article/details/62051509 2,spring boot mysql 8小时连接超时 https://blog.csdn.net...

2019-05-22 14:32:10

阅读数 9

评论数 0

java list排序

1、简介   这个和数组的排序又不一样了。   其实Java针对数组和List的排序都有实现,对数组而言,你可以直接使用Arrays.sort,对于List和Vector而言,你可以使用Collections.sort方法。   Java API针对集合类型的排序提供了2个方法: jav...

2019-05-08 10:00:05

阅读数 9

评论数 0

IntelliJ-IDEA相关链接

1,最新IntelliJ IDEA 激活(2100年到期) https://blog.csdn.net/qq_37350706/article/details/81334489

2019-05-05 10:06:03

阅读数 7

评论数 0

docker容器中安装vim 、telnet、ifconfig命令

在使用docker容器时,有时候里边没有安装vim,敲vim命令时提示说:vim: command not found,这个时候就需要安装vim,可是当你敲apt-get install vim命令时,提示: Reading package lists... Done Build...

2019-04-19 11:16:33

阅读数 7

评论数 0

强大而精致的机器学习调参方法:贝叶斯优化

一、简介 贝叶斯优化用于机器学习调参由J. Snoek(2012)提出,主要思想是,给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布。简单的说,就是考虑了上一次参数的信息...

2019-04-14 23:48:49

阅读数 65

评论数 0

调参----贝叶斯优化(BayesianOptimization)

from sklearn.datasets import make_classification from sklearn.model_selection import cross_val_score from sklearn.ensemble import RandomForestClassif...

2019-04-14 23:03:25

阅读数 21

评论数 0

xgboost中XGBClassifier()参数详解

http://www.cnblogs.com/wanglei5205/p/8579244.html 常规参数 booster gbtree 树模型做为基分类器(默认) gbliner 线性模型做为基分类器 silent silent=0时,不输出中间过程(默认) ...

2019-04-14 17:59:22

阅读数 8

评论数 0

机器学习之类别不平衡问题 (3) —— 采样方法

机器学习之类别不平衡问题 (1) —— 各种评估指标 机器学习之类别不平衡问题 (2) —— ROC和PR曲线 机器学习之类别不平衡问题 (3) —— 采样方法 前两篇主要谈类别不平衡问题的评估方法,重心放在各类评估指标以及ROC和PR曲线上,只有在明确了这些后,我们才能据此选择具体的...

2019-04-13 20:43:05

阅读数 72

评论数 0

机器学习--集成学习(Ensemble Learning)

一、集成学习法 在机器学习的有监督学习算法中,我们的目标是学习出一个稳定的且在各个方面表现都较好的模型,但实际情况往往不这么理想,有时我们只能得到多个有偏好的模型(弱监督模型,在某些方面表现的比较好)。集成学习就是组合这里的多个弱监督模型以期得到一个更好更全面的强监督模型,集成学习潜在的思想是即...

2019-04-10 12:13:40

阅读数 18

评论数 0

ML模型超参数调节:网格搜索、随机搜索与贝叶斯优化

在进行机器学习的过程中,最为核心的一个概念就是参数,而参数又分为模型参数与超参数。模型参数,顾名思义就是我们使用的模型根据训练数据的分布学习到的参数,这一部分不需要我们人为的先验经验。超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,需要对超参数进行优化,给模型选择...

2019-04-09 21:11:39

阅读数 95

评论数 0

sklearn参数优化方法

学习器模型中一般有两个参数:一类参数可以从数据中学习估计得到,还有一类参数无法从数据中估计,只能靠人的经验进行指定,后一类参数就叫超参数 比如,支持向量机里的C,Kernel,gama,朴素贝叶斯里的alpha等,在学习其模型的设计中,我们要搜索超参数空间为学习器模型找到最合理的超参数,可以通过...

2019-04-09 21:08:09

阅读数 57

评论数 0

scikit-learn和tensorflow的区别

1、功能不同 Scikit-learn(sklearn)的定位是通用机器学习库,而TensorFlow(tf)的定位主要是深度学习库。一个显而易见的不同:tf并未提供sklearn那种强大的特征工程,如维度压缩、特征选择等。究其根本,我认为是因为机器学习模型的两种不同的处理数据的方式: 传统机...

2019-04-09 12:02:55

阅读数 76

评论数 0

XGBoost(极端梯度提升)算法原理小结

前言 XGBoost(eXtreme Gradient Boosting)全名叫极端梯度提升,XGBoost是集成学习方法的王牌,在Kaggle数据挖掘比赛中,大部分获胜者用了XGBoost,XGBoost在绝大多数的回归和分类问题上表现的十分顶尖,本文较详细的介绍了XGBoost的算法原理。 ...

2019-04-08 21:31:05

阅读数 222

评论数 0

RF/GBDT/XGBoost/LightGBM简单总结(完结)

阅读目录 RandomForest(随机森林): GBDT(梯度提升树) XGBoost LightGBM 这四种都是非常流行的集成学习(EnsembleLearning)方式,在本文简单总结一下它们的原理和使用方法. 回到顶部 RandomForest(随机森林): 随机森林属于B...

2019-04-07 16:39:27

阅读数 12

评论数 0

Bagging与随机森林算法原理小结

在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系。另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合。本文就对集成学习中Bagging与随机森林算法做一个总结。     随机森林是集成学习中可以和梯...

2019-04-07 15:58:05

阅读数 46

评论数 0

Python机器学习笔记——随机森林算法

随机森林算法的理论知识   随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法。随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代表集成学习技术水平的方法”。 一,随机森林的随机性体现在哪几个方面? 1,数据集的随机选...

2019-04-07 15:38:12

阅读数 144

评论数 0

XGBoost算法原理简介及调参

译文:Complete Guide to Parameter Tuning in XGBoost 简介 当模型没有达到预期效果的时候,XGBoost就是数据科学家的最终武器。XGboost是一个高度复杂的算法,有足够的能力去学习数据的各种各样的不规则特征。 用XGBoost建模很简单,但是提...

2019-04-06 14:24:00

阅读数 15

评论数 0

xgboost 参数调优指南

一、XGBoost的优势 XGBoost算法可以给预测模型带来能力的提升。当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势: 1 正则化 标准GBDT 的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。 实际上,X...

2019-04-06 14:19:46

阅读数 5

评论数 0

XGboost数据比赛实战之调参篇(完整流程)

这一篇博客的内容是在上一篇博客Scikit中的特征选择,XGboost进行回归预测,模型优化的实战的基础上进行调参优化的,所以在阅读本篇博客之前,请先移步看一下上一篇文章。 我前面所做的工作基本都是关于特征选择的,这里我想写的是关于XGBoost参数调整的一些小经验。之前我在网站上也看到很多相关...

2019-04-06 12:49:39

阅读数 146

评论数 0

XGBoost参数调优完全指南(附Python代码)

译注:文内提供的代码和运行结果有一定差异,可以从这里下载完整代码对照参考。另外,我自己跟着教程做的时候,发现我的库无法解析字符串类型的特征,所以只用其中一部分特征做的,具体数值跟文章中不一样,反而可以帮助理解文章。所以大家其实也可以小小修改一下代码,不一定要完全跟着教程做~ ^0^ 需要提前安装好...

2019-04-06 12:38:12

阅读数 133

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭