python之sklearn学习笔记

sklearn介绍

scikit-learn是数据挖掘与分析的简单而有效的工具。
依赖于NumPy, SciPy和matplotlib。

它主要包含以下几部分内容:

从功能来分:
classification
Regression
Clustering
Dimensionality reduction
Model selection

经常用到的有clustering, classification(svm, tree, linear regression 等), decomposition, preprocessing, metrics等

cluster

阅读sklearn.cluster的API,可以发现里面主要有两个内容:一个是各种聚类方法的class如cluster.KMeans,一个是可以直接使用的聚类方法的函数

sklearn.cluster.k_means(X, n_clusters, init='k-means++', 
    precompute_distances='auto', n_init=10, max_iter=300, 
    verbose=False, tol=0.0001, random_state=None, 
    copy_x=True, n_jobs=1, algorithm='auto', return_n_iter=False)

所以实际使用中,对应也有两种方法。

在sklearn.cluster共有9种聚类方法,分别是

AffinityPropagation: 吸引子传播
AgglomerativeClustering: 层次聚类
Birch
DBSCAN
FeatureAgglomeration: 特征聚集
KMeans: K均值聚类
MiniBatchKMeans
MeanShift
SpectralClustering: 谱聚类
拿我们最熟悉的Kmeans举例说明:

采用类构造器,来构造Kmeans聚类器

首先API中KMeans的构造函数为:

sklearn.cluster.KMeans(n_clusters=8,
     init='k-means++', 
    n_init=10, 
    max_iter=300, 
    tol=0.0001, 
    precompute_distances='auto', 
    verbose=0, 
    random_state=None, 
    copy_x=True, 
    n_jobs=1, 
    algorithm='auto'
    )
参数的意义:

n_clusters:簇的个数,即你想聚成几类
init: 初始簇中心的获取方法
n_init: 获取初始簇中心的更迭次数
max_iter: 最大迭代次数(因为kmeans算法的实现需要迭代)
tol: 容忍度,即kmeans运行准则收敛的条件
precompute_distances:是否需要提前计算距离
verbose: 冗长模式(不太懂是啥意思,反正一般不去改默认值)
random_state: 随机生成簇中心的状态条件。
copy_x: 对是否修改数据的一个标记,如果True,即复制了就不会修改数据。
n_jobs: 并行设置
algorithm: kmeans的实现算法,有:‘auto’, ‘full’, ‘elkan’, 其中 'full’表示用EM方式实现
下面给一个简单的例子:

import numpy as np
from sklearn.cluster import KMeans
data = np.random.rand(100, 3) #生成一个随机数据,样本大小为100, 特征数为3

#假如我要构造一个聚类数为3的聚类器
estimator = KMeans(n_clusters=3)#构造聚类器
estimator.fit(data)#聚类
label_pred = estimator.label_ #获取聚类标签
centroids = estimator.cluster_centers_ #获取聚类中心
inertia = estimator.inertia_ # 获取聚类准则的最后值
直接采用kmeans函数:
import numpy as np
from sklearn import cluster
data = np.random.rand(100, 3) #生成一个随机数据,样本大小为100, 特征数为3
k = 3 # 假如我要聚类为3个clusters
[centroid, label, inertia] = cluster.k_means(data, k)
classification

常用的分类方法有:

KNN最近邻:sklearn.neighbors
logistic regression逻辑回归: sklearn.linear_model.LogisticRegression
svm支持向量机: sklearn.svm
Naive Bayes朴素贝叶斯: sklearn.naive_bayes
Decision Tree决策树: sklearn.tree
Neural network神经网络: sklearn.neural_network
那么下面以KNN为例(主要是Nearest Neighbors Classification)来看看怎么使用这些方法:

from sklearn import neighbors, datasets

# import some data to play with
iris = datasets.load_iris()
n_neighbors = 15
X = iris.data[:, :2]  # we only take the first two features. We could
                      # avoid this ugly slicing by using a two-dim dataset
y = iris.target

weights = 'distance' # also set as 'uniform'
clf = neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
clf.fit(X, y)

# if you have test data, just predict with the following functions
# for example, xx, yy is constructed test data
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
Z = clf.predict(np.c_[xx.ravel(), yy.ravel()]) # Z is the label_pred

再比如svm:

from sklearn import svm
X = [[0, 0], [1, 1]]
y = [0, 1]

#建立支持向量分类模型
clf = svm.SVC()

#拟合训练数据,得到训练模型参数
clf.fit(X, y)

#对测试点[2., 2.], [3., 3.]预测
res = clf.predict([[2., 2.],[3., 3.]])

#输出预测结果值
print (res)
#get support vectors
print ("support vectors:", clf.support_vectors_)

#get indices of support vectors
print ("indices of support vectors:", clf.support_ )

#get number of support vectors for each class
print ("number of support vectors for each class:", clf.n_support_ )

当然SVM还有对应的回归模型SVR

from sklearn import svm
X = [[0, 0], [2, 2]]
y = [0.5, 2.5]
clf = svm.SVR()
clf.fit(X, y) 
res = clf.predict([[1, 1]])
print(res)

逻辑回归

from sklearn import linear_model
X = [[0, 0], [1, 1]]
y = [0, 1]
logreg = linear_model.LogisticRegression(C=1e5)

#we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, y)

res = logreg.predict([[2, 2]])
print(res)

preprocessing

这一块通常我要用到的是Scale操作。而Scale类型也有很多,包括:

StandardScaler
MaxAbsScaler
MinMaxScaler
RobustScaler
Normalizer
等其他预处理操作
对应的有直接的函数使用:scale(), maxabs_scale(), minmax_scale(), robust_scale(), normaizer()。

import numpy as np
from sklearn import preprocessing
X = np.random.rand(3,4)

#用scaler的方法
scaler = preprocessing.MinMaxScaler()
X_scaled = scaler.fit_transform(X)

#用scale函数的方法
X_scaled_convinent = preprocessing.minmax_scale(X)

decomposition

NMF

import numpy as np
X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
from sklearn.decomposition import NMF
model = NMF(n_components=2, init='random', random_state=0)
model.fit(X)

print(model.components_)
print(model.reconstruction_err_)
print(model.n_iter_)

PCA

import numpy as np
X = np.array([[1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]])
from sklearn.decomposition import PCA
model = PCA(n_components=2)
model.fit(X)

print(model.components_)
print(model.n_components_)
print(model.explained_variance_)
print(model.explained_variance_ratio_)
print(model.mean_)
print(model.noise_variance_)

datasets

sklearn本身也提供了几个常见的数据集,如iris, diabetes, digits, covtype, kddcup99, boson, breast_cancer,都可以通过sklearn.datasets.load_iris类似的方法加载相应的数据集。它返回一个数据集。采用下列方式获取数据与标签。

from sklearn.datasets import load_iris

iris = load_iris()
X = iris.data 
y = iris.target 
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
【优质项目推荐】 1、项目代码均经过严格本地测试,运行OK,确保功能稳定后才上传平台。可放心下载并立即投入使用,若遇到任何使用问题,随时欢迎私信反馈与沟通,博主会第一时间回复。 2、项目适用于计算机相关专业(如计科、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业教师,或企业员工,小白入门等都适用。 3、该项目不仅具有很高的学习借鉴价值,对于初学者来说,也是入门进阶的绝佳选择;当然也可以直接用于 毕设、课设、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,可以在此代码基础上二次开发,进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎借鉴使用,并欢迎学习交流,共同探索编程的无穷魅力! 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip 基于业务逻辑生成特征变量python实现源码+数据集+超详细注释.zip
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值