cs231n课程笔记
文章平均质量分 63
沉沉沉小姐
这个作者很懒,什么都没留下…
展开
-
损失函数~
损失函数概念及几种常见损失函数原创 2022-07-02 15:16:40 · 2767 阅读 · 0 评论 -
卷积神经网络
卷积滤波器常规前馈网络的神经元排列在平面的全连接层中,而ConvNet中的层排列在三维(宽×高×深)中。卷积是通过在输入层上滑动一个或多个滤波器(filter)来执行的。每个滤波器都有一个相对较小的感受野(宽×高),但它贯穿输入图像的全部深度。每个滤波器在输入图像上滑动每一步,都会输出一个激活值:它是输入值和过滤器值之间的点积。此过程将为每个滤波器生成一个二维的激活图(activation map)。将每个滤波器生成的激活图堆叠在一起可以形成一个三维输出层,其输出深度等于所用滤波器的数量。参数共原创 2022-04-19 23:37:05 · 2589 阅读 · 0 评论 -
激活函数(sigmoid、Tanh、ReLU、Leaky ReLU、ELU、Maxout)
1. 激活函数sigmoid函数公式:图像:sigmoid可以将数据压缩到[0,1]范围内,可看作神经元的饱和放电率。在历史上,sigmoid函数非常有用,这是因为它对神经元的激活频率有很好的解释:从完全不激活(0)到求和后的最大频率处的完全饱和(saturated)的激活(1)。然而现在sigmoid激活函数使用较少,主要原因为两点:梯度消失。当神经元的激活在接近0或1时会饱和,导致其导数为0,则梯度为0。在反向传播时,这个(局部)梯度将会与整个损失函数关于该门单元输出的梯度相乘。原创 2022-04-11 20:27:11 · 2635 阅读 · 0 评论