题目链接:AcWing287
题意:给定一颗无向带权树,要你找出一个节点作为根,向叶子节点流水,使流水量最大。
二次扫描与换根法的入门题。
设d[]表示以1为根的情况下,每个节点向他的子树流水量的最大值。
那么可以得出转移方程:
d [ x ] = ∑ y ∈ S o n o f x { m i n ( d [ y ] , e d g e ( x , y ) ) , d e g [ y ] > 1 e d g e ( x , y ) , d e g [ y ] = 1 d[x]=\sum_{y \in Son\;of\; x}\left\{ \begin{aligned} min(d[y],edge(x,y)) & ,°[y]>1 \\ edge(x,y) &,°[y]=1 \end{aligned} \right. d[x]=y∈Sonofx∑{
min(d[y],edge(x,y))edge(x,y),,deg[y]>1deg[y]<

这是一篇关于无向带权树最大流量问题的解析,介绍了如何使用二次扫描与换根法解决此类问题。文章首先给出了AcWing287题目的链接,然后详细阐述了算法的核心思想。通过定义d[]和f[]数组,分别表示以1为根和以各节点为根时的子树最大流量,利用传递方程进行计算。d[]的计算自底向上,f[]的计算自顶向下,这两个过程不能通过一次DFS完成,体现了算法的巧妙之处。
最低0.47元/天 解锁文章
2312

被折叠的 条评论
为什么被折叠?



