1030. 完美数列(25) PAT乙级真题

1030. 完美数列(25)

给定一个正整数数列,和正整数p,设这个数列中的最大值是M,最小值是m,如果M <= m * p,则称这个数列是完美数列。

现在给定参数p和一些正整数,请你从中选择尽可能多的数构成一个完美数列。

输入格式:

输入第一行给出两个正整数N和p,其中N(<= 105)是输入的正整数的个数,p(<= 109)是给定的参数。第二行给出N个正整数,每个数不超过109

输出格式:

在一行中输出最多可以选择多少个数可以用它们组成一个完美数列。

输入样例:
10 8
2 3 20 4 5 1 6 7 8 9
输出样例:
8
不得不说25分的题在乙级这个范围内确实没几个简单的,这道题很好理解但是不得不说这给的范围和规定的时间都有点过分了。这题肯定要先用快排排序一下,要注意用long储存数据。排序完成后正常的思路是用一个嵌套循环遍历一遍找到要求的值,这个思路是没错的,但由于题目给的数据有点夸张了,这里我们就需要一个max来帮助我们减少循环,优化运算。max为要求的最大值,用i,j控制循环,每次j=i+max开始,一旦发现不满足条件就退出循环,能有效减少循环次数,下面是我的代码:
#include<stdio.h>
#include<stdlib.h>

int cmp(const void *a,const void *b);


int main(void)
{
    long p;
    long n,a[100001];
    int i,j=0,max=0,t=0;
    scanf("%ld %ld",&n,&p);
    for (i=0;i<n;i++)
    {
        scanf("%ld",&a[i]);
    }
    qsort(&a[0],n,sizeof(long),cmp); //先排序
    for (i=0;i<n;i++)
    {
        for ( j = i + max; j < n; j++)
        {
            if (a[j] <= a[i] * p) {
                t = j - i + 1;
                if (t > max)
                {
                    max = t; //更新最大值
                }
            } else
            {
                break;  //一旦不满足就退出内层循环
            }
        }
    }
    printf("%d",max);
    return 0;
}

int cmp(const void *a,const void *b)
{
    return (*(long*)a-*(long*)b);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值