- 博客(28)
- 资源 (1)
- 收藏
- 关注
转载 2015-05-12-python核心编程(六)Python序列
#####Python序列---------------------------------------------------------------------------------------------------------------------------6.1 序列1.标准类型操作符2.序列类型操作符seq[ind]-->获得下标为ind 的元素seq[i
2015-05-12 17:46:52 700
转载 2015-05-06python-web攻略(1)套接字-IPv4-简单的客户端服务器编程
------------------------------------------------------------------------------#1.2打印设备名和IPv4地址import sockethost_name=socket.gethostname()print "Host name:%s"%host_nameprint "IP address:%s"%s
2015-05-06 22:42:29 821
转载 2015-04-21-金融和经济数据应用(1)-数据规整化方面的话题
--cd L:\czzimport pandas as pdimport numpy as npfrom pandas import DataFrame,Series----------------------------------------------------------------------------------------------(一)、数据规整化方面
2015-04-21 23:17:00 1064
转载 2015-04-16-时间序列(2)-时区处理等
from pandas import DataFrame,Seriesimport numpy as npimport pandas as pd------------------------------------------------------------------------------------------------------------------------
2015-04-21 20:20:10 1544
转载 2015-04-09-时间序列(1)-日期和时间数据类型及工具+时间序列基础+日期的范围、频率以及移动
from pandas import DataFrame,Seriesimport numpy as npimport pandas as pd----------------------------------------------------------------------------------------------(一)、日期和时间数据类型及工具--dateti
2015-04-09 21:58:37 2186
转载 2015-04-08-数据聚合与分组运算(3)-透视表和交叉表+2012联邦选举委员会数据库
--------------------------------------------------------------------------------------------(四)、透视表和交叉表from pandas import DataFrame,Seriesimport numpy as npimport pandas as pdcd L:\czztips
2015-04-08 21:59:10 1568 1
转载 2015-04-07-数据聚合与分组运算(2)-分组级运算和转换
--------------------------------------------------------------------------------------------(三)、分组级运算和转换dfk1_means=df.groupby('key1').mean().add_prefix('mean_')k1_meanspd.merge(df,k1_means,l
2015-04-07 22:39:20 869
转载 2015-04-01-数据聚合与分组运算(1)-GroupBy技术+数据聚合
--------------------------------------------------------------------------------------------(一)、GroupBy技术from pandas import DataFrame,Seriesimport numpy as npimport pandas as pddf=DataFrame(
2015-04-01 22:25:32 1421
转载 2015-03-29-绘图和可视化(3)-绘制地图:图形化显示海地地震危机数据
--------------------------------------------------------------------------------------------(三)绘制地图:图形化显示海地地震危机数据data=pd.read_csv(r'ch08\Haiti.csv')data时间戳和位置(经度和纬度)data[['INCIDENT DATE'
2015-03-29 21:31:54 1824
转载 2015-03-29-绘图和可视化(2)-pandas中的绘图函数
--from pandas import DataFrame,Series--------------------------------------------------------------------------------------------(二)pandas中的绘图函数------1.线性图s=Series(np.random.randn(10).cu
2015-03-29 19:57:55 1640
转载 2015-03-28-绘图和可视化(1)-matplotlib API入门
--import numpy as npimport matplotlib.pyplot as pltfrom numpy.random import randnplot(np.arange(10))--------------------------------------------------------------------------------------
2015-03-28 15:42:23 1393
转载 2015-03-19-数据规整化(3)-字符串操作
--字符串操作--------------------------------------------------------------------------------------------(一)字符串对象方法1.splitval='a,b, guido'val.split(',')2.strippieces=[x.strip() for x in val.sp
2015-03-19 22:41:42 914
转载 2015-03-19-数据规整化(3)-数据转换
--数据转换--------------------------------------------------------------------------------------------(一)移除重复数据from pandas import DataFrame,Seriesimport numpy as npimport pandas as pddata=Data
2015-03-19 21:23:11 818
转载 2015-03-19-python核心编程(四)Python数字
#####Python数字---------------------------------------------------------------------------------------------------------------------------5.1 数字类型如何更新数字对象如何删除数字对象 使用 del 语句--------------------
2015-03-19 18:07:19 365
转载 2015-03-19-python核心编程(三)Python对象
#####Python对象---------------------------------------------------------------------------------------------------------------------------4.1 Python对象-----4.2 标准类型数字(分为几个子类型,其中有三个是整型)、整型、布尔型、长
2015-03-19 15:31:35 328
转载 2015-03-18-数据规整化(2)-重塑和轴向旋转
--重塑和轴向旋转--------------------------------------------------------------------------------------------(一)重塑层次化索引stack:将数据的列旋转为行unstack:将数据的行旋转为列data=DataFrame(np.arange(6).reshape((2,3)),in
2015-03-18 22:24:00 449
转载 2015-03-18-数据规整化(1)-合并数据集
一、合并数据集-------------------------------------------------------------------------------------(一)、数据库风格的DataFrame合并import pandas as pdfrom pandas import Series,DataFrame一对多df1=DataFrame(
2015-03-18 21:42:08 998
转载 2015-03-18-python核心编程(二)Python基础
#####Python基础---------------------------------------------------------------------------------------------------------------------------3.1 语句和语法井号(#)表示之后的字符为 Python 注释换行 (\n) 是标准的行分隔符(通常一个语句一
2015-03-18 17:22:35 284
转载 2015-03-18-python核心编程(一)Python起步
#####Python起步---------------------------------------------------------------------------------------------------------------------------2.1 程序输出,print 语句及“Hello World!”--print 语句调用str()函数显示对象,而交
2015-03-18 15:59:05 331
原创 2015-03-10数据加载、存储与文件格式(3)
import pandas as pdfrom pandas import Series,DataFrame---------------------------------------------------------------------------------------------------JSON数据obj="""{"name":"Wes","places_
2015-03-10 23:08:25 1069
原创 2015-03-09数据加载、存储与文件格式(2)
----逐块读取文本文件result=pd.read_csv('ch06\ex6.csv')通过nrows指定读取行数pd.read_csv('ch06\ex6.csv',nrows=5)逐块读取文件 chunksizechunker=pd.read_csv('ch06\ex6.csv',chunksize=1000)tot=Series([])for piece in
2015-03-09 22:22:59 498
原创 2015-03-09数据加载、存储与文件格式(1)
读写文本格式的数据--read_csv 从文件、URL、文件型对象中加载带分隔符的数据。默认分隔符为逗号--read_table 从文件、URL、文件型对象中加载带分隔符的数据。默认分隔符为制表符("\t")--read_fwf 读取定宽列格式数据(也就是说,没有分隔符)--read_clipboard 读取剪贴板中的数据,可以看做read_table的剪贴板版。在将网页转换为表格
2015-03-09 21:19:34 620
原创 2015-03-08-pandas(3)
--------------------------------------------------------------------------------8.相关系数与协方差?from pandas import Series,DataFrameimport pandas as pdimport numpy as npimport pandas.io.data as we
2015-03-08 22:10:49 733
原创 2015-03-04-pandas(1)
----------------------------------------------------------------------------------Seriesfrom pandas import Series,DataFrameimport pandas as pdimport numpy as npobj=pd.Series([4,7,-5,3])
2015-03-06 22:02:53 419
原创 2015-03-06-pandas(2)
from pandas import Series,DataFrameimport pandas as pdimport numpy as np--------------------------------------------------------------------------------3.索引、选取和过滤①.Seriesobj=Series(np.aran
2015-03-06 22:02:24 506
原创 2015-03-03numpy(3)
--Numpy(2)--通用函数:快速的元素级数组函数eg:np.sqrt(arr) --平方根np.exp(arr) np.maximum(x,y) --元素级最大值np.modf(arr)--将数组定位小数和整数部分以两个独立数组的形式返回--利用数组进行数据处理np.meshgrid函数接受两个一维数组,并产生两个二维矩阵(对应于两个数组中所有的(x,
2015-03-06 22:00:40 353
转载 2015-03-03-Numpy(2)
--Numpy(2)--通用函数:快速的元素级数组函数eg:np.sqrt(arr) --平方根np.exp(arr) np.maximum(x,y) --元素级最大值np.modf(arr)--将数组定位小数和整数部分以两个独立数组的形式返回--利用数组进行数据处理np.meshgrid函数接受两个一维数组,并产生两个二维矩阵(对应于两个数组中所有的(x,
2015-03-06 21:58:30 505
原创 20150302-python启程-numply(1)
常用命令:ipython --pylabipython notebook --pylab=inlineipython qtconsole --python=inline------------------------------------------------------------------------------------------------------------
2015-03-02 20:43:49 715
win 32位 安装 python2.7.3及Ipython
2015-02-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人