自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(28)
  • 资源 (1)
  • 收藏
  • 关注

转载 2015-05-12-python核心编程(六)Python序列

#####Python序列---------------------------------------------------------------------------------------------------------------------------6.1 序列1.标准类型操作符2.序列类型操作符seq[ind]-->获得下标为ind 的元素seq[i

2015-05-12 17:46:52 700

转载 2015-05-06python-web攻略(1)套接字-IPv4-简单的客户端服务器编程

------------------------------------------------------------------------------#1.2打印设备名和IPv4地址import sockethost_name=socket.gethostname()print "Host name:%s"%host_nameprint "IP address:%s"%s

2015-05-06 22:42:29 821

转载 2015-04-21-金融和经济数据应用(1)-数据规整化方面的话题

--cd L:\czzimport pandas as pdimport numpy as npfrom pandas import DataFrame,Series----------------------------------------------------------------------------------------------(一)、数据规整化方面

2015-04-21 23:17:00 1064

转载 2015-04-16-时间序列(2)-时区处理等

from pandas import DataFrame,Seriesimport numpy as npimport pandas as pd------------------------------------------------------------------------------------------------------------------------

2015-04-21 20:20:10 1544

转载 2015-04-09-时间序列(1)-日期和时间数据类型及工具+时间序列基础+日期的范围、频率以及移动

from pandas import DataFrame,Seriesimport numpy as npimport pandas as pd----------------------------------------------------------------------------------------------(一)、日期和时间数据类型及工具--dateti

2015-04-09 21:58:37 2186

转载 2015-04-08-数据聚合与分组运算(3)-透视表和交叉表+2012联邦选举委员会数据库

--------------------------------------------------------------------------------------------(四)、透视表和交叉表from pandas import DataFrame,Seriesimport numpy as npimport pandas as pdcd L:\czztips

2015-04-08 21:59:10 1568 1

转载 2015-04-07-数据聚合与分组运算(2)-分组级运算和转换

--------------------------------------------------------------------------------------------(三)、分组级运算和转换dfk1_means=df.groupby('key1').mean().add_prefix('mean_')k1_meanspd.merge(df,k1_means,l

2015-04-07 22:39:20 869

转载 2015-04-01-数据聚合与分组运算(1)-GroupBy技术+数据聚合

--------------------------------------------------------------------------------------------(一)、GroupBy技术from pandas import DataFrame,Seriesimport numpy as npimport pandas as pddf=DataFrame(

2015-04-01 22:25:32 1421

转载 2015-03-29-绘图和可视化(3)-绘制地图:图形化显示海地地震危机数据

--------------------------------------------------------------------------------------------(三)绘制地图:图形化显示海地地震危机数据data=pd.read_csv(r'ch08\Haiti.csv')data时间戳和位置(经度和纬度)data[['INCIDENT DATE'

2015-03-29 21:31:54 1824

转载 2015-03-29-绘图和可视化(2)-pandas中的绘图函数

--from pandas import DataFrame,Series--------------------------------------------------------------------------------------------(二)pandas中的绘图函数------1.线性图s=Series(np.random.randn(10).cu

2015-03-29 19:57:55 1640

转载 2015-03-28-绘图和可视化(1)-matplotlib API入门

--import numpy as npimport matplotlib.pyplot as pltfrom numpy.random import randnplot(np.arange(10))--------------------------------------------------------------------------------------

2015-03-28 15:42:23 1393

转载 2015-03-19-数据规整化(3)-字符串操作

--字符串操作--------------------------------------------------------------------------------------------(一)字符串对象方法1.splitval='a,b, guido'val.split(',')2.strippieces=[x.strip() for x in val.sp

2015-03-19 22:41:42 914

转载 2015-03-19-数据规整化(3)-数据转换

--数据转换--------------------------------------------------------------------------------------------(一)移除重复数据from pandas import DataFrame,Seriesimport numpy as npimport pandas as pddata=Data

2015-03-19 21:23:11 818

转载 2015-03-19-python核心编程(四)Python数字

#####Python数字---------------------------------------------------------------------------------------------------------------------------5.1 数字类型如何更新数字对象如何删除数字对象 使用 del 语句--------------------

2015-03-19 18:07:19 365

转载 2015-03-19-python核心编程(三)Python对象

#####Python对象---------------------------------------------------------------------------------------------------------------------------4.1 Python对象-----4.2 标准类型数字(分为几个子类型,其中有三个是整型)、整型、布尔型、长

2015-03-19 15:31:35 328

转载 2015-03-18-数据规整化(2)-重塑和轴向旋转

--重塑和轴向旋转--------------------------------------------------------------------------------------------(一)重塑层次化索引stack:将数据的列旋转为行unstack:将数据的行旋转为列data=DataFrame(np.arange(6).reshape((2,3)),in

2015-03-18 22:24:00 449

转载 2015-03-18-数据规整化(1)-合并数据集

一、合并数据集-------------------------------------------------------------------------------------(一)、数据库风格的DataFrame合并import pandas as pdfrom pandas import Series,DataFrame一对多df1=DataFrame(

2015-03-18 21:42:08 998

转载 2015-03-18-python核心编程(二)Python基础

#####Python基础---------------------------------------------------------------------------------------------------------------------------3.1 语句和语法井号(#)表示之后的字符为 Python 注释换行 (\n) 是标准的行分隔符(通常一个语句一

2015-03-18 17:22:35 284

转载 2015-03-18-python核心编程(一)Python起步

#####Python起步---------------------------------------------------------------------------------------------------------------------------2.1 程序输出,print 语句及“Hello World!”--print 语句调用str()函数显示对象,而交

2015-03-18 15:59:05 331

原创 2015-03-10数据加载、存储与文件格式(3)

import pandas as pdfrom pandas import Series,DataFrame---------------------------------------------------------------------------------------------------JSON数据obj="""{"name":"Wes","places_

2015-03-10 23:08:25 1069

原创 2015-03-09数据加载、存储与文件格式(2)

----逐块读取文本文件result=pd.read_csv('ch06\ex6.csv')通过nrows指定读取行数pd.read_csv('ch06\ex6.csv',nrows=5)逐块读取文件 chunksizechunker=pd.read_csv('ch06\ex6.csv',chunksize=1000)tot=Series([])for piece in

2015-03-09 22:22:59 498

原创 2015-03-09数据加载、存储与文件格式(1)

读写文本格式的数据--read_csv 从文件、URL、文件型对象中加载带分隔符的数据。默认分隔符为逗号--read_table 从文件、URL、文件型对象中加载带分隔符的数据。默认分隔符为制表符("\t")--read_fwf 读取定宽列格式数据(也就是说,没有分隔符)--read_clipboard 读取剪贴板中的数据,可以看做read_table的剪贴板版。在将网页转换为表格

2015-03-09 21:19:34 620

原创 2015-03-08-pandas(3)

--------------------------------------------------------------------------------8.相关系数与协方差?from pandas import Series,DataFrameimport pandas as pdimport numpy as npimport pandas.io.data as we

2015-03-08 22:10:49 733

原创 2015-03-04-pandas(1)

----------------------------------------------------------------------------------Seriesfrom pandas import Series,DataFrameimport pandas as pdimport numpy as npobj=pd.Series([4,7,-5,3])

2015-03-06 22:02:53 419

原创 2015-03-06-pandas(2)

from pandas import Series,DataFrameimport pandas as pdimport numpy as np--------------------------------------------------------------------------------3.索引、选取和过滤①.Seriesobj=Series(np.aran

2015-03-06 22:02:24 506

原创 2015-03-03numpy(3)

--Numpy(2)--通用函数:快速的元素级数组函数eg:np.sqrt(arr) --平方根np.exp(arr) np.maximum(x,y) --元素级最大值np.modf(arr)--将数组定位小数和整数部分以两个独立数组的形式返回--利用数组进行数据处理np.meshgrid函数接受两个一维数组,并产生两个二维矩阵(对应于两个数组中所有的(x,

2015-03-06 22:00:40 353

转载 2015-03-03-Numpy(2)

--Numpy(2)--通用函数:快速的元素级数组函数eg:np.sqrt(arr) --平方根np.exp(arr) np.maximum(x,y) --元素级最大值np.modf(arr)--将数组定位小数和整数部分以两个独立数组的形式返回--利用数组进行数据处理np.meshgrid函数接受两个一维数组,并产生两个二维矩阵(对应于两个数组中所有的(x,

2015-03-06 21:58:30 505

原创 20150302-python启程-numply(1)

常用命令:ipython --pylabipython notebook --pylab=inlineipython qtconsole --python=inline------------------------------------------------------------------------------------------------------------

2015-03-02 20:43:49 715

win 32位 安装 python2.7.3及Ipython

找了很久才找齐,多谢http://blog.csdn.net/iccav/article/details/9886831 这个博文的指点

2015-02-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除