估计很多人都听过数据分析,但是真正做起来却不是那么一回事了。要么胡子眉毛一把抓,要么无从下手。这说明缺少理论知识的支持,那么本文就将盘点一下数据分析常用的方法论和思路,作为数据分析入门的基础。
数据分析的流程
在介绍数据分析方法论和思路之前,我们还是先不厌其烦地看一下数据分析的流程,简单来说分为以下六个步骤:
1、明确分析的目的,提出问题。只有弄清楚了分析的目的是什么,才能准确定位分析因子,提出有价值的问题,提供清晰的指引方向。
2、数据采集。收集原始数据,数据来源可能是丰富多样的,一般有数据库、互联网、市场调查等。具体办法可以通过加入“埋点”代码,或者使用第三方的数据统计工具。
3、数据处理。对收集到的原始数据进行数据加工,主要包括数据清洗、数据分组、数据检索、数据抽取等处理方法。
4、数据探索。通过探索式分析检验假设值的形成方式,在数据之中发现新的特征,对整个数据集有个全面认识,以便后续选择何种分析策略。
5、分析数据。数据整理完毕,就要对数据进行综合分析和相关分析,需要对产品、业务、技术等了如指掌才行,常常用到分类、聚合等数据挖掘算法。Excel是最简单的数据分析工具,专业数据分析工具有FineBI、Python等。
6、得到可视化结果。借助可视化数据,能有效直观地表述想要呈现的信息、观点和建议,比如金字塔图、矩阵图、漏斗图、帕累托图等,同时也可以使用报告等形式与他人交流。
数据分析方法论
数据分析的方法论很多,小编为大家介绍其中六种比较常见的理论。
1、PEST分析法
PEST,也就是政治(Politics)、经济(Economy)、社会(Society)、技术(Technology),能从各个方面把握宏观环境的现状及变化趋势,主要用户行业分析。
宏观环境又称一般环境,是指影响一切行业和企业的各种宏观力量。
对宏观环境因素作分析时,由于不同行业和企业有其自身特点和经营需要,分析的具体内容会有差异,但一般都应对政治、经济、技术、社会,这四大类影响企业的主要外部环境因素进行分析。
政治环境:政治体制、经济体制、财政政策、税收政策、产业政策、投资政策等。
社会环境:人口规模、性别比例、年龄结构、生活力式、购买习惯、城市特点等。
技术环境:折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度等。
经济环境:GDP 及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。
2、5W2H分析法
5W2H,即为什么(Why)、什么事(What)、谁(Who)、什么时候(When)、什么地方(Where)、如何做(How)、什么价格(How much),主要用于用户行为分析、业务问题专题分析、营销活动等。
该分析方法又称为七何分析法,是一个非常简单、方便又实用的工具,以用户购买行为为例:
Why:用户为什么要买?产品的吸引点在哪里?
What:产品提供的功能是什么?
Who:用户群体是什么?这个群体的特点是什么?
When:购买频次是多少?
Where:产品在哪里最受欢迎?在哪里卖出去?
How:用户怎么购买?购买方式什么?
How much:用户购买的成本是多少?时间成本是多少?
3、SWOT分析法
SWOT分析法也叫态势分析法,S (strengths)是优势、W (weaknesses)是劣势,O (opportunities)是机会、T (threats)是威胁或风险。
SWOT分析法是用来确定企业自身的内部优势、劣势和外部的机会和威胁等,通过调查列举出来,并依照矩阵形式排列,然后用系统分析的思想,把各种因素相互匹配起来加以分析。
运用这种方法,可以对研究对象所处的情景进行全面、系统、准确的研究,从而将公司的战略与公司内部资源、外部环境有机地结合起来。
4、4P营销理论
4P即产品(Product)、价格(Price)、渠道(Place)、推广(Promotion),在营销领域,这种以市场为导向的营销组合理论,被企业应用最普遍。
可以说企业的一切营销动作都是在围绕着4P理论进行,也就是将:产品、价格、渠道、推广。通过将四者的结合、协调发展,从而提高企业的市场份额,达到最终获利的目的。
产品:从市场营销的角度来看,产品是指能够提供给市场,被入们使用和消费并满足人们某种需要的任何东西,包括有形产品、服务、人员、组织、观念或它们的组合。
价格:是指顾客购买产品时的价格,包括基本价格、折扣价格、支付期限等。影响定价的主要因素有三个:需求、成本与竞争。
渠道:是指产品从生产企业流转到用户手上全过程中所经历的各个环节。
促销:是指企业通过销售行为的改变来刺激用户消费,以短期的行为(比如让利、买一送一,营销现场气氛等等)促成消费的增长,吸引其他品牌的用户或导致提前消费来促进销售的增长。广告、宣传推广、人员推销、销售促进是一个机构促销组合的四大要素。
5、逻辑树法
逻辑树又称问题树、演绎树或分解树等。它是把一个已知问题当成“主干”,然后开始考虑这个问题和哪些相关问题有关,也就是“分支”。逻辑树能保证解决问题的过程的完整性,它能将工作细分为便于操作的任务,确定各部分的优先顺序,明确地把责任落实到个人。
逻辑树的使用必须遵循以下三个原则:
要素化:把相同的问题总结归纳成要素。
框架化:将各个要素组织成框架。遵守不重不漏的原则。
关联化:框架内的各要素保持必要的相互关系,简单而不独立。
6、AARRR模型
AARRR模型是所有运营人员都要了解的一个数据模型,从整个用户生命周期入手,包括获取(Acquisition)、激活(Activition)、留存(Retention)、变现(Revenue)和传播(Refer)。
每个环节分别对应生命周期的5个重要过程,即从获取用户,到提升活跃度,提升留存率,并获取收入,直至最后形成病毒式传播。
数据分析思路
数据分析方法论主要是从宏观角度介绍如何进行数据分析,它就像是一个数据分析的前期规划,搭建一个清晰的数据分析框架。那么对于具体的业务场景问题,就要靠具体的分析方法来支撑了,下面小编就介绍几种常用的数据分析思路。
1、趋势分析
最简单、最常见的数据分析方法,一般用于核心指标的长期跟踪,比如点击率、GMV、活跃用户数。可以看出数据有那些趋势上的变化,有没有周期性,有没有拐点等,继而分析原因。
2、多维分解
也就是通过不同的维度对于数据进行分解,以获取更加精细的数据洞察。举个例子,对网站维护进行数据分析,可以拆分出地区、访问来源、设备、浏览器等等维度。
3、用户分群
针对符合某种特定行为或背景信息的用户,进行特定的优化和分析,将多维度和多指标作为分群条件,有针对性地优化供应链,提升供应链稳定性。
4、漏斗分析
按照已知的转化路径,借助漏斗模型分析总体和每一步的转化情况。例如将漏斗图用于网站关键路径的转化率分析,不仅能显示用户的最终转化率,同时还可以展示每一节点的转化率。
5、留存分析
留存分析是一种用来分析用户参与情况/活跃程度的分析模型,考察进行初始行为的用户中,有多少人会进行后续行为。衡量留存的常见指标有次日留存率、7日留存率、30日留存率等。
6、A/B 测试
A/B测试是为了达到一个目标,采取了两套方案,通过实验观察两组方案的数据效果,判断两组方案的好坏,需要选择合理的分组样本、监测数据指标、事后数据分析和不同方案评估。
7、对比分析
分为横向对比(跟自己比)和纵向对比(跟别人比),常见的对比应用有A/B test,A/B test的关键就是保证两组中只有一个单一变量,其他条件保持一致。
8、交叉分析
交叉分析法就是将对比分析从多个维度进行交叉展现,进行多角度的结合分析,从中发现最为相关的维度来探索数据变化的原因。
作者:帆软
链接:https://www.jianshu.com/p/986ca2b0a717
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。