三个小伙子同时爱上一个姑娘,为了决定他们谁能娶这个姑娘,他们决定用手枪进行一次决斗。
阿历克斯的命中率是30%,克里斯比他好些,命中率是50%,最出色的枪手是鲍勃,他从来不失误,命中率100%。由于这个显而易见的事实,为公平起见,他们决定按这样的顺序:阿历克斯先开枪,克里斯第二,鲍勃最后。然后这样循环,直到他们只剩下一个人。那么这三个人中谁活下来的机会最大呢?他们都应该采取什么样的策略?
解析:
每个人开枪时都有选择,朝某一位对手开枪或者开空枪。要假设这三个人都是理性的人,即他们做出的决定能使自己得到最大生存机会。还应该明确若决斗只剩下2个人时,每一个人都肯定要向对手开枪,而不是愚蠢的开空枪。克里斯:如果克里斯开枪时仍有3个人,那么他肯定先朝鲍勃开枪,不然的话他必死。鲍勃:如果鲍勃开枪时仍有3个人,那么他肯定先朝威胁最大的克里斯开枪。
阿历克斯:他有三种选择。
1)开空枪:
克里斯先死,鲍勃死的概率=0.5*0.3=0.15
鲍勃先死,克里斯死的概率=0.5*0.3+0.5*0.7*0.5*0.3+0.5*0.7*0.5*0.7*0.5*0.3+......=0.5*0.3(1-0.35^n/1-0.35)=0.23
综上所述:开空枪阿历克斯活着的概率为0.15+0.23=0.38
2)开枪打克里斯:
有0.3的概率打死克里斯,打死克里斯之后阿历克斯必死,此时阿历克斯活着的概率为0
有0.7的概率不打死克里斯,这就相当于开空枪,此时阿历克斯活着的概率为0.7*0.38=0.266
综上所述:开空枪阿历克斯活着的概率为0+0.266=0.266
3)开枪打鲍勃
有0.3的概率打死鲍勃,剩下阿历克斯跟克里斯决斗,此时阿历克斯存活的概率为0.3*0.23=0.069
有0.7的概率不打死鲍勃,这就相当于开空枪,此时阿历克斯存活的概率为0.7*0.38=0.266
综上所述:开枪打鲍勃活着的概率为0.069+0.266=0.335
因此阿历克斯会选择开空枪。
阿历克斯选择开空枪之后,克里斯存活的概率
克里斯:克里斯肯定要朝鲍勃开枪,否则轮到鲍勃他必死。
克里斯活着的概率为0.5*0.7*0.5+0.5*0.7*0.5*0.7*0.5+......=0.5*(1-0.35^n/1-0.35)-0.5=0.27
阿历克斯选择开空枪之后,鲍勃存活的概率
鲍勃:他要保证自己在第一轮不死,即要躲过克里斯的那一枪,然后毙了克里斯,然后再躲过阿历克斯的那一枪,最后毙了阿历克斯。
鲍勃活着的概率为0.5*0.7=0.35
综上所述,阿历克斯肯定一直选择开空枪,直到克里斯、鲍勃有一个死掉之后,再开枪杀掉活着的那个,这样的话他获胜的概率率为0.38。
克里斯肯定想阿历克斯的最优做法,即阿历克斯肯定是先放空枪,直到自己和鲍勃先死一个,所以克里斯肯定先杀鲍勃,鲍勃死后再杀阿历克斯,这样他才能赢,这样的话他获胜的概率为0.27。
鲍勃想阿历克斯放空枪对自己最有利,所以自己必须先杀克里斯,最后再杀阿历克斯,这样自己才能赢,这样的话他获胜的概率为0.35。
从上面可以知道阿历克斯活下来的机会最大。