题目如下:现有一个数组长度为n,里面存放有1到n-2,顺序不定,其中有两个数字出现了两次,现在要找出那两个数字。
例子A={2, 3, 1, 4, 5, 2, 4},这个数组长度为7,存放了1到5,但2和4出现了两次,程序输出2和4。
方法1 蛮力查找
主要思想:对于数组中的第i个数,查找i+1到末尾的所有整数,一个数如果出现了两次就可以在第一次后面找到第二次出现的数。
时间复杂度 O(n^2)
空间复杂度 O(1)
方法2:异或(xor)
主要思想:由于限定了是1到n之间的数,且每个数至少出现一次,可以先把数组中的所有整数异或一遍,然后把结果再和1、2、3、、、n异或一遍,这样就得到了那两个重复出现的整数的异或结果 x。接下来主要是想办法把它们两给区分开来,对于异或结果x,它的二进制表示有0和1构成,由异或的性质可知,二进制表示的x中那些出现0的位是两个重复数对应位置均为1或者0的结果,而出现1的位则只有一种可能:两个数对应位置一个是0,一个是1。借助这个特点,我们就可以选取一个特定的位置(x的那个位置是1)把原来的数组分成两个部分,部分I对应那个特定位置为1的数,部分II对应那个特定位置为0的数,这样就把问题转化为:在每个部分查找一个重复出现的数字。
时间复杂度 O(n)
空间复杂度 O(1)
#include<stdio.h>
//method 1
//void find_duplicates(int *num, int start, int end)
//{
// int size = end - start + 1;
// int i = 0;
// int j = 0;
// for (i = 0; i < size; i++)
// {
// for (j = i + 1; j < size; j++)
// {
// if (num[i] == num[j])
// printf("%d\n", num[i]);
// }
// }
//
//}
//method 2
void find_duplicates(int *num, int start, int end)
{
int size = end - start + 1;
int bit_flag = 0;
int i = 0;
for (i = 0; i < size; i++)
{
bit_flag ^= num[i];
}
for (i = 1; i < size - 1; i++) {
bit_flag ^= i;
}
//根据bit_flag二进制中最右边的1将数组中的整数划分成两个部分
int division_bit = bit_flag & ~(bit_flag - 1);
int a = 0;//部分I的xor结果
int b = 0;//部分II的xor结果
for (i = 0; i < size; i++) {
if (num[i] & division_bit)
a ^= num[i];
else
b ^= num[i];
}
for (i = 1; i < size - 1; i++) {
if (i & division_bit)
a ^= i;
else
b ^= i;
}
printf("duplicate numbers a=%d \t b=%d\n", a, b);
}
void main()
{
int A[] = {2, 3, 1, 4, 5, 2, 4};
find_duplicates(A, 0, 6);
}