HDU - 5572 An Easy Physics Problem(计算几何)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/cherish0222/article/details/78239824

点我看题

题意:一个点A(ax,ay)沿着某个方向(vx,vy)移动,有一个圆心为O(ox,oy)半径为r的圆,若点撞到圆会反弹且没有能量损失,问在这个点的行走过程中,能不能经过点B(bx,by).

分析:拿到题目就想到扥两种情况,①没有撞到圆;②撞到圆

对于没有撞到圆的情况,只要判断一直往下走的过程中是否会经过点B;

如果撞到圆,就要看在撞到圆之前是否会经过B,不经过的话,看反弹之后会不会经过B.

//设入射线的极角方程为x=vx*t+ax,y=vy*t+ay
//圆的方程为(x-ox)^2+(y-oy)^2 = r^2
//联立两个方程组得到(vx^2+vy^2)*t^2+2*((ax-ox)*vx+(ay-oy)*vy)*t+((ax-ox)^2+(ay-oy)^2-r^2) = 0

首先联立直线(用极角方程)与圆的方程,看delta是否大于0,如果大于0且b小于0(两根都要大于0的,即-b/a>0),求出较小的t(想想为什么),然后求出交点,接着可以求出切线方程(emmm自己求得是法线结果wa了好久),再求出B点关于切线方程的反对称点C,看C是否在A的射线上.

参考代码:

/*计算几何*/
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>

using namespace std;
#define eps 1e-8
double ox,oy,r;
double ax,ay,vx,vy;
double bx,by;

int sgn( double x)
{
    if( fabs(x) < eps)
        return 0;
    if( x > 0)
        return 1;
    return -1;
}

inline double sqr( double x)
{
    return x*x;
}

int main()
{
    int T;
    scanf("%d",&T);
    while( T--)
    {
        scanf("%lf%lf%lf",&ox,&oy,&r);
        scanf("%lf%lf%lf%lf",&ax,&ay,&vx,&vy);
        scanf("%lf%lf",&bx,&by);
        static int cas = 1;
        printf("Case #%d: ",cas++);

        //设入射线的极角方程为x=vx*t+ax,y=vy*t+ay
        //圆的方程为(x-ox)^2+(y-oy)^2 = r^2
        //联立两个方程组得到(vx^2+vy^2)*t^2+2*((ax-ox)*vx+(ay-oy)*vy)*t+((ax-ox)^2+(ay-oy)^2-r^2) = 0
        double a = sqr(vx)+sqr(vy);
        double b = 2*((ax-ox)*vx+(ay-oy)*vy);
        double c = sqr(ax-ox)+sqr(ay-oy)-sqr(r);
        //delta大于0,表示有两个根,-b/2a>0(使方程有两个正根)
        if( sgn( b*b-4*a*c) > 0 && sgn(b) < 0)
        {
            double tp = (-b-sqrt(b*b-4*a*c))/(2.0*a);//取较小的根,因为第一个交点肯定距离A点近一点
            double px = vx*tp+ax;//入射线与圆的交点
            double py = vy*tp+ay;
            //判断B是否在入射线上
            if( vx != 0)
            {
                double t = (bx-ax)/vx;
                if( sgn(by-vy*t-ay) == 0 && sgn(t-tp) <= 0)
                {
                    puts("Yes");
                    continue;
                }
            }
            else if( vy != 0)
            {
                double t = (by-ay)/vy;
                if( sgn(bx-vx*t-ax) == 0 && sgn(t-tp) <= 0)
                {
                    puts("Yes");
                    continue;
                }
            }
            //求切线方程Ax+By+C=0
            double A = px-ox;
            double B = py-oy;
            double C = (ox-px)*px+(oy-py)*py;
            //求B点关于法线的反对称点
            double cx = bx-2.0*A*(A*bx+B*by+C)/(sqr(A)+sqr(B));
            double cy = by-2.0*B*(A*bx+B*by+C)/(sqr(A)+sqr(B));
            if( sgn(vx) != 0)
            {
                double t = (cx-ax)/vx;
                if( sgn(cy-vy*t-ay) == 0 && sgn(t) > 0)//>0???
                    puts("Yes");
                else
                    puts("No");
            }
            else if( sgn(vy) != 0)
            {
                double t = (cy-ay)/vy;
                if( sgn(cx-vx*t-ax) == 0 && sgn(t) > 0)
                    puts("Yes");
                else
                    puts("No");
            }
        }
        else//射线
        {
            if( sgn(vx) != 0)
            {
                double t = (bx-ax)/vx;
                if( sgn(by-vy*t-ay) == 0 && sgn(t) > 0)
                    puts("Yes");
                else
                    puts("No");
            }
            else if( sgn(vy) != 0)
            {
                double t = (by-ay)/vy;
                if( sgn(bx-vx*t-ax) == 0 && sgn(t) > 0)
                    puts("Yes");
                else
                    puts("No");
            }
        }
    }

    return 0;
}



阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页