ECON0013: MICROECONOMICS


ECON0013: MICROECONOMICS

Answer the question in Part A, and ONE question from Part B.I and ONE question from Part B.II.

This assessment accounts for 60 per cent of the marks for the course. Each question carries an equal

percentage of the total mark.

In cases where a student answers more questions than requested by the assessment rubric, the policy of

the Economics Department is that the student’s first set of answers up to the required number will be the

ones that count (not the best answers). All remaining answers will be ignored. No credit will be given for

reproducing parts of the course notes. The answer to each part of each question should be on at most one

page (for example A.1 has 6 parts and there should be at most 6 pages of answers to this). Any part of

any answer that violates this will be given zero marks.

ECON0013 1 TURN OVER

PART A

You must answer the question in this section.

A.1 (a) An individual lives for two periods, consuming c when young and c when old. He has assets

0 1

worth A at the beginning of the first period and whatever he has not spent at the end of the

period can be carried forward to the second as saving accruing interest at the real rate r. He

has no other source of income. He has no reason to keep resources beyond the end of the

second period so c = (A?c )(1+r).

1 0

He chooses consumption to maximise lifetime utility

U = ν(c )+βν(c )

0 1

where ν(.) is a within-period utility function and β is a preference parameter.

(i) What properties must the function ν(.) have if the weakly preferred sets in the space of c

0

and c are to be convex? How would you interpret the required properties economically?

1

How would you interpret the parameter β?

(ii) Show that he chooses to consume more in the earlier period if and only if β(1+r) < 1.

Interpret this.

(iii) Suppose that within-period utility has the form ν(c) = ?e?c. Find an expression for

the chosen consumption in each period. (You can ignore corner solutions and therefore

consider only cases where c and c are chosen to both be positive.)

0 1

(iv) Show that the lifetime utility achieved will therefore equal

2+r

U = ? e?A(1+r)/(2+r){β(1+r)}1/(2+r).

1+r

Find therefore an expression for the minimum assets A required to sustain a lifetime utility

of at least U.

(b) A firm produces output Q using skilled labour z and unskilled labour z . The production

0 1

technology is summarised by production function

(cid:20) (cid:21)

1 β

Q = ?ln e?z0 + e?z1

1+β 1+β

for z , z ≥ 0. Labour is hired at skilled wage w and unskilled wage w and the firm takes

0 1 0 1

wages as given.

(i) Without explicitly solving the cost minimisation problem, use analogy with the results of

previous parts to explain

A. why the firm chooses to use more skilled than unskilled labour only if w > βw ,

1 0

ECON0013 2 CONTINUED

B. why the firm’s cost function has the form

w +w w

1 0 1

C(Q,w ,w ) = (w +w )Q + (w +w )ln ?w lnw ?w ln

0 1 1 0 1 0 0 0 1

1+β β

and

C. the form of the conditional demand functions for each type of labour.

(Again, you can ignore corner solutions.)

(ii) Is average cost increasing, decreasing or constant in Q? What does this tell you about

whether there are increasing, decreasing or constant returns to scale?

(You can use here the fact that

w +w w

1 0 1

(w +w )ln ?w lnw ?w ln ≤ 0

1 0 0 0 1

1+β β

for all values of w , w and β.)

0 1

(iii) What is the marginal cost for this technology? Discuss the nature of the firm’s output

supply function.

ECON0013 3 TURN OVER

PART B.I

Answer ONE question from this section.

B.I.1 There is a buyer B and a seller S. The seller produces z units of a good at the cost C(z) = czα

(where α ≥ 1). The buyer gets utility U(z,p) = Bzβ?pz (where β < 1) if she consumes z units of

the good and pays p for each unit she buys.

(a) Considerthe followinggame: First thesellersetsthepricepandundertakes toproduce however

many units the buyer wants at that price. Then the buyer decides how many units to buy.

Describe the subgame perfect equilibrium of this game.

(b) Now consider the different game. First the buyer sets the price p and promises to buy all the

units the seller will produce at that price. Then the seller chooses how many units to produce.

Describe the subgame perfect equilibrium of this game and compare it with your answer above.

(c) If the market for the good were competitive what is the buyer’s demand curve and what is the

seller’s supply curve for the good? What would be the outcome if the competitive price were

then set by an external regulator? Explain how this differs from the outcome in both of the

games above.

(d) Describe a Nash equilibrium of the game where the seller moves first that is not a subgame

perfect equilibrium.

ECON0013 4 CONTINUED

B.I.2 A worker is employed by a firm to produce output. If the worker puts in effort there is: probability

p that they produce two units of output, probability q that they produce one unit, and probability

1?p?q that they produce zero units. If the worker does not put in effort these probabilities are:

r, s, 1?r?s respectively. The manager decides to pay the worker u ≥ 0 if two units are produced

v ≥ 0 if only one unit is produced and w ≥ 0 if no units are produced. The worker has a utility

function x2 ?c if she receives the wage x = w,v,u and puts in effort. If she does not put in effort

she has the utility x2, where x = w,v,u . The worker can earn the utility U from working elsewhere.

The manager can sell each unit of the good that the worker produces for a price R.

(a) Supposethatr < pandconsiderthetwocontracts(u,v,w) = (1,1,1)or(u,v,w) = (1/r,0,0)

which does the worker prefer if she puts in low effort? Which one does the worker prefer when

she puts in high effort? Which contract is cheapest for the firm? Explain your results.

(b) The firm decides that it is content with low effort from the worker. Write down and solve a

constrained optimisation that describes the cheapest way for the firm to achieve this. Interpret

what you find. When does the firm make a profit?

(c) Suppose that p = 2r and the firm decides to pay the worker according to the contract u > 0

and v = w = 0. For what values of c,r,p,U is the worker (a) willing to work for the firm and

provide low effort, (b) willing to work for the firm and provide high effort? If the conditions for

case (a) hold what is the most profitable contract for the firm to offer? If the conditions for

case (b) hold what is the most profitable contract?

(d) Discuss what you think an optimal contract would look like in this case (p = 2r). In particular

consider when the firm is willing to pay for high effort from the worker.

ECON0013 5 TURN OVER

PART B.II

Answer ONE question from this section.

B.II.1 Consider an economy in which K firms use labour Lk to produce corn Qk, k = 1,...,K and H

consumers supply labour lh and consume corn ch, h = 1,...,H.

Firms produce according to the technology

(cid:16) (cid:17)

Qk = Aln 1+Lk

where A is a production parameter.

Consumers are potentially of two types. There are H individuals of Type A who have utilities

A

1 (cid:16) (cid:17)2

Uh = ch ? lh

2

whereas there are H = H ?H individuals of Type B who have utilities

B A

1 (cid:16) (cid:17)3

Uh = ch ? lh .

3

Let the price of corn be p and the nominal wage be w so that the real wage expressed in unit of corn

is W = w/p.

Firms choose production plans to maximise profits πk = pQk?wLk taking prices as given. Profits

are distributed as income to consumers according to production shares θhk (where (cid:80)H θhk =

h=1

1 for each k = i,...,K) and consumers maximise utility subject to budget constraints pch =

(cid:80)K θhkπk +wlh taking prices and firm profits as given.

k=1

(a) Find an expression for the labour demand of each firm given W. Hence find each firm’s profit.

(b) Find expressions for the labour supply of each consumer type given W and firm profits.

(c) Suppose all individuals are of type A, H = H and H = 0, that H = K, and that θhk = 1/H

A B

forallhandallk sothatfirmownershipisequallyspread. FindtheuniqueWalrasianequilibrium

real wage W?.

(d) Illustrate the equilibrium on a Robinson Crusoe diagram for the case H = 1 (and explain why

this also represents the more general case H > 1).

(e) How does the equilibrium real wage change if H > K so that there are more workers than

firms? Discuss.

(f) How does the equilibrium real wage change if θhk (cid:54)= 1/H for some h and k so that ownership

is not equally spread? Discuss.

(g) Now suppose that both H > 0 and H > 0 so that the consumer population consists of

A B

individuals of both types. Is the equilibrium still necessarily unique? Either explain why the

equilibrium remains unique or provide an example where it is not.

ECON0013 6 CONTINUED

B.II.2 Individuals in an economy consume n goods q = (q ,q ,...,q )(cid:48), purchased at the prices p =

1 2 n

(p ,p ,...,p )(cid:48) from budgets y. You decide to model behaviour using preferences represented by

1 2 n

the expenditure function c(υ,p) where υ represents consumer utility.

(a) Explain what an expenditure function is and why

?lnc(υ,p)

= w (υ,p) i = 1,2,...,n

i

?lnp

i

where w (υ,p) is a function giving the budget share of the ith good.

i

Suppose that the expenditure function takes the form

lnc(υ,p) = (cid:88) α ilnp

i

+ υe(cid:80) iβilnpi

i

where α = (α ,α ,...,α )(cid:48) and β = (β ,β ,...,β )(cid:48) are vectors of preference parameters.

1 2 n 1 2 n

(b) What homogeneity property must an expenditure function have? Outline a set of restrictions

on α and β which suffice for c(υ,p) to have that property.

(c) Find an expression for the budget shares under these preferences.

Concern is high that recent inflation, under which the prices have changed from p0 to p1, has

aggravated inequality by hitting poorer individuals harder than the more affluent.

(d) Explain what a true or Konu¨s cost-of-living index

K(cid:0) υ,p0,p1(cid:1)

is and show that under these

preferences

lnK(cid:0) υ,p0,p1(cid:1) = (cid:88) α iln pp 01 i + υ(cid:104) e(cid:80) iβilnp1 i ?e(cid:80) iβilnp0 i(cid:105) .

i i

(e) Explain what a Laspeyres cost-of-living index

L(cid:0) υ0,p0,p1(cid:1)

is and show that under these pref-

erences

(cid:40) (cid:41)

lnL(cid:0) υ0,p0,p1(cid:1) = ln (cid:88) α ip p1 i

0

+ υ0(cid:88) β ip p1 i

0

e(cid:80) iβilnp0 i

i i i i

where υ0 denotes utility in the initial period.

(f) Explainwhytheframeworkwhichyouhaveadoptedformodellingbehaviourisusefulforaddress-

ing the question of how inflation aggravates inequality only if preferences are not homothetic.

What must be true of α and β if preferences are not to be homothetic?

(g) What can be said about comparison of the Laspeyres and true indices if preferences are homo-

thetic? What if they are not homothetic?

(h) What aspect of consumer behaviour do the Laspeyres indices fail to account for? Supposing

that preferences are non-homothetic, discuss how this omission might distort judgement of the




 

内容概要:本文档详细介绍了Android开发中内容提供者(ContentProvider)的使用方法及其在应用间数据共享的作用。首先解释了ContentProvider作为四大组件之一,能够为应用程序提供统一的数据访问接口,支持不同应用间的跨进程数据共享。接着阐述了ContentProvider的核心方法如onCreate、insert、delete、update、query和getType的具体功能与应用场景。文档还深入讲解了Uri的结构和作用,它是ContentProvider中用于定位资源的重要标识。此外,文档说明了如何通过ContentResolver在客户端应用中访问其他应用的数据,并介绍了Android 6.0及以上版本的运行时权限管理机制,包括权限检查、申请及处理用户的选择结果。最后,文档提供了具体的实例,如通过ContentProvider读写联系人信息、监听短信变化、使用FileProvider发送彩信和安装应用等。 适合人群:对Android开发有一定了解,尤其是希望深入理解应用间数据交互机制的开发者。 使用场景及目标:①掌握ContentProvider的基本概念和主要方法的应用;②学会使用Uri进行资源定位;③理解并实现ContentResolver访问其他应用的数据;④熟悉Android 6.0以后版本的权限管理流程;⑤掌握FileProvider在发送彩信和安装应用中的应用。 阅读建议:建议读者在学习过程中结合实际项目练习,特别是在理解和实现ContentProvider、ContentResolver以及权限管理相关代码时,多进行代码调试和测试,确保对每个知识点都有深刻的理解。
开发语言:Java 框架:SSM(Spring、Spring MVC、MyBatis) JDK版本:JDK 1.8 或以上 开发工具:Eclipse 或 IntelliJ IDEA Maven版本:Maven 3.3 或以上 数据库:MySQL 5.7 或以上 此压缩包包含了本毕业设计项目的完整内容,具体包括源代码、毕业论文以及演示PPT模板。 项目配置完成后即可运行,若需添加额外功能,可根据需求自行扩展。 运行条件 确保已安装 JDK 1.8 或更高版本,并正确配置 Java 环境变量。 使用 Eclipse 或 IntelliJ IDEA 打开项目,导入 Maven 依赖,确保依赖包下载完成。 配置数据库环境,确保 MySQL 服务正常运行,并导入项目中提供的数据库脚本。 在 IDE 中启动项目,确认所有服务正常运行。 主要功能简述: 用户管理:系统管理员负责管理所有用户信息,包括学生、任课老师、班主任、院系领导和学校领导的账号创建、权限分配等。 数据维护:管理员可以动态更新和维护系统所需的数据,如学生信息、课程安排、学年安排等,确保系统的正常运行。 系统配置:管理员可以对系统进行配置,如设置数据库连接参数、调整系统参数等,以满足不同的使用需求。 身份验证:系统采用用户名和密码进行身份验证,确保只有授权用户才能访问系统。不同用户类型(学生、任课老师、班主任、院系领导、学校领导、系统管理员)具有不同的操作权限。 权限控制:系统根据用户类型分配不同的操作权限,确保用户只能访问和操作其权限范围内的功能和数据。 数据安全:系统采取多种措施保障数据安全,如数据库加密、访问控制等,防止数据泄露和非法访问。 请假审批流程:系统支持请假申请的逐级审批,包括班主任审批和院系领导审批(针对超过三天的请假)。学生可以随时查看请假申请的审批进展情况。 请假记录管理:系统记录学生的所有请假记录,包括请假时间、原因、审批状态及审批意见等,供学生和审批人员查询。 学生在线请假:学生可以通过系统在线填写请假申请,包括请假的起止日期和请假原因,并提交给班主任审批。超过三天的请假需经班主任审批后,再由院系领导审批。 出勤信息记录:任课老师可以在线记录学生的上课出勤情况,包括迟到、早退、旷课和请假等状态。 出勤信息查询:学生、任课老师、班主任、院系领导和学校领导均可根据权限查看不同范围的学生上课出勤信息。学生可以查看自己所有学年的出勤信息,任课老师可以查看所教班级的出勤信息,班主任和院系领导可以查看本班或本院系的出勤信息,学校领导可以查看全校的出勤信息。 出勤统计与分析:系统提供出勤统计功能,可以按班级、学期等条件统计学生的出勤情况,帮助管理人员了解学生的出勤状况
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值