Sort the Array

探讨通过反转数组中的某个片段来实现数组升序排列的问题,并提供了一种解决方案,包括关键的算法思路和技术实现细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Being a programmer, you like arrays a lot. For your birthday, your friends have given you an array a consisting of n distinct integers.

Unfortunately, the size of a is too small. You want a bigger array! Your friends agree to give you a bigger array, but only if you are able to answer the following question correctly: is it possible to sort the array a (in increasing order) by reversing exactly one segment of a? See definitions of segment and reversing in the notes.

Input

The first line of the input contains an integer n (1 ≤ n ≤ 105) — the size of array a.

The second line contains n distinct space-separated integers: a[1], a[2], ..., a[n](1 ≤ a[i] ≤ 109).

Output

Print "yes" or "no" (without quotes), depending on the answer.

If your answer is "yes", then also print two space-separated integers denoting start and end (start must not be greater than end) indices of the segment to be reversed. If there are multiple ways of selecting these indices, print any of them.

Example
Input
3
3 2 1
Output
yes
1 3
Input
4
2 1 3 4
Output
yes
1 2
Input
4
3 1 2 4
Output
no
Input
2
1 2
Output
yes
1 1
Note

Sample 1. You can reverse the entire array to get [1, 2, 3], which is sorted.

Sample 3. No segment can be reversed such that the array will be sorted.

Definitions

A segment [l, r] of array a is the sequence a[l], a[l + 1], ..., a[r].

If you have an array a of size n and you reverse its segment [l, r], the array will become:

a[1], a[2], ..., a[l - 2], a[l - 1], a[r], a[r - 1], ..., a[l + 1], a[l], a[r + 1], a[r + 2], ..., a[n - 1], a[n].


用排好序的数组b与原数组a对比,记录下第一个不同的位置的下标i和最后一个不同的位置的下标j,以a[i++]==b[j--]来做对比,只要有一个不相等即为no

#include<bits/stdc++.h>
#define MAX 100005
using namespace std;

int a[MAX];
int b[MAX];

int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        int l=0,r=0;
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
            b[i] = a[i];
        }

        sort(b+1,b+n+1);

        for(int i=1;i<=n;i++)
        {
            if(a[i]!=b[i])
            {
                r= i;
                if(l==0)
                l=i;
            }
        }

        if(l==0) l=1;
        if(r==0) r=1;

        int i,j;
        for(i=l,j=r;i<r;i++,j--)
        {
            if(a[i]!=b[j])
            {
                printf("no\n");
                return 0;
            }
        }

        printf("yes\n");
        printf("%d %d\n",l,r);
    }
    return 0;
}

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值