近世代数解析-1(四)

该博客主要是代数结构面试题的解析,涵盖选择题和填空题。选择题涉及环、域、群等概念,如交换环中元素乘积为零的情况、子群指数计算等;填空题则有群中元素阶的计算、域中元素乘法逆元的确定等,帮助理解代数结构相关知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下是所有题目的解析:

选择题解析

对于第一个问题:
假设环 R 是有单位元的交换环,a,b∈R。如果 ab=0,则:
在交换环中,ab=0 并不意味着 a=0 或 b=0。例如,在整数模6的环中,2和3的乘积为0,但2和3都不为0。因此,选项A和B都是错误的。选项D明显与题目条件矛盾,所以也是错误的。因此,正确答案是C,即 a,b 可以是 R 中的任意元素。

对于第二个问题:
已知 G 是一个阶为 20 的群,H 是 G 的一个子群,且 ∣H∣=5。则 H 在 G 中的指数 ∣G:H∣ 等于:
根据子群的指数定义,∣G:H∣=∣H∣∣G∣​=520​=4。因此,正确答案是A。

对于第三个问题:
关于环和域的陈述中,正确的是:
每个域都是环,因为域满足环的所有定义条件(加法、乘法结合律、交换律,分配律,有单位元,没有零因子)。但并非每个环都是域,因为环可能包含零因子。因此,正确答案是B。

对于第四个问题:
设 F 是一个域,F[x] 是 F 上的一元多项式环。若 f(x)∈F[x] 且 deg(f(x))=n,则 f(x) 至多有多少个不同的根?
一个 n 次多项式在域上至多有 n 个不同的根(包括重根)。因此,正确答案是A。

对于第五个问题:
在模 5 下,哪个整数是 3 的乘法逆元?
需要找到一个整数 x,使得 3x≡1(mod5)。通过尝试,可以发现 3×2=6≡1(mod5),所以 2 是 3 的乘法逆元。因此,正确答案是A。

对于第六个问题:
关于群的同态和同构的陈述中,错误的是:
同态的群不一定具有相同的阶。例如,考虑从 Z4​ 到 Z2​ 的自然同态,其中 Z4​ 的阶为4,而 Z2​ 的阶为2。因此,选项B是错误的。

对于第七个问题:
设 G 是一个群,a,b∈G。若 ab=ba,则称 a 与 b 是交换的。下列哪个选项是正确的?
若 G 是交换群,则 G 的所有元素都满足交换律,因此 G 的所有子群也必然是交换的。因此,正确答案是C。

对于第八个问题:
设 H 是群 G 的一个子群,且 ∣G∣=20,∣H∣=4。则 H 在 G 中的指数 ∣G:H∣ 等于多少?
根据子群的指数定义,∣G:H∣=∣H∣∣G∣​=420​=5。因此,正确答案是B。

对于第九个问题:
关于环和域,下列哪个说法是错误的?
所有的环并不都是域,因为环可能包含零因子,而域中不存在零因子。因此,选项B是错误的。

对于第十个问题:
设 G 是一个群,a∈G,若对于任意 g∈G,都有 gag−1=a,则称 a 为 G 的中心元素。下列关于中心元素的陈述中,正确的是:
群 G 的所有元素都是中心元素当且仅当 G 是阿贝尔群,因为在阿贝尔群中,所有元素都满足交换律。因此,正确答案是B。

对于第十一个问题:
A. Zn 总是阿贝尔群。这是正确的,因为 Zn 中的加法满足交换律,所以 Zn 是阿贝尔群。
B. Zn 总是交换环。这也是正确的,因为 Zn 中的加法和乘法都满足交换律。
C. Zn 是域当且仅当 n 是素数。这是正确的。当 n 是素数时,Zn 中的非零元素都有乘法逆元,且没有零因子,因此 Zn 是域。当 n 不是素数时,Zn 中存在零因子(例如,n 的因子在 Zn 中与 n 相乘得到 0),因此 Zn 不是域。
D. Zn 的乘法单位元是任意整数。这是错误的。在 Zn 中,乘法单位元是 1(模 n),而不是任意整数。

对于第十二个问题:
A. R 一定是域。这是错误的。即使 R/I 是域,R 本身不一定是域。例如,考虑整数环 Z 和其理想 2Z。Z/2Z 是域,但 Z 不是。
B. R 的所有非零元素都可逆。这也是错误的。R/I 是域并不意味着 R 的所有非零元素都可逆。
C. I 一定是 R 的极大理想。这是正确的。如果 R/I 是域,那么 I 必须是 R 的极大理想,因为域没有非平凡的真理想。
D. R 一定是交换环。这是错误的。R/I 是域并不意味着 R 必须是交换环。

对于第十三个问题:
A. g(x) 一定是 f(x) 的倍数。这是错误的。即使 f(x)g(x) = h(x)²,g(x) 也不一定是 f(x) 的倍数。
B. f(x) 和 g(x) 一定没有公共根。这是正确的。如果 f(x) 和 g(x) 有公共根 α,那么 f(α) = 0 且 g(α) = 0,这将导致 h(α) = 0,与 h(x)² 非零矛盾。
C. f(x) 和 g(x) 一定是域 F 上的不可约多项式。这是错误的。f(x) 是不可约的,但 g(x) 不一定是。
D. f(x) 的次数一定等于 g(x) 的次数。这是错误的。f(x) 和 g(x) 的次数之间没有这样的必然关系。

对于第十四个问题:
A. H 一定是 G 的正规子群。这是错误的。即使 K 是 G 的正规子群,H 也不一定是 G 的正规子群。
B. H 一定是 K 的正规子群。这是正确的。因为 H ⊆ K,且 K 是 G 的正规子群,所以 H 是 K 的正规子群。
C. H 一定是 G 的极大子群。这是错误的。H 是 K 的子群,但不一定是 G 的极大子群。
D. H 一定是 G 的极小正规子群。这也是错误的。H 是 K 的正规子群,但不一定是 G 的极小正规子群。

对于第十五个问题:
A. √a 和 -√a。这是正确的。在 F[x] 中,多项式 x² - a 的根是 √a 和 -√a(如果它们在 F 中存在)。
B. a 和 -a。这是错误的。x² - a 的根不是 a 和 -a。
C. 无法确定,因为 F 的特征未知。这是错误的。F 的特征与此问题无关。
D. 不存在,因为 x² - a 总是可约的。这是错误的。x² - a 只有在 a 是 F 中的平方数时才可约。

对于第十六个问题:
B. 阿贝尔群。这是正确的。如果 G 的所有元素都是中心元素,那么对于任意 a, b ∈ G,都有 ab = ba,因此 G 是阿贝尔群。

对于第十七个问题:
B. p-1。这是正确的。在特征为 p 的域 F 中,非零元素的阶是 p-1,因为每个非零元素都满足 xp = x(由域的定义和特征的定义得出)。

对于第十八个问题:
A. 交换环。这是正确的。如果对于任意 a, b ∈ R,都有 (a + b)² = a² + b²,那么通过展开并比较项,可以得到 ab = ba,因此 R 是交换环。

对于第十九个问题:
A. mn。这是正确的。如果 ord(a) = m 且 ord(b) = n,且 gcd(m, n) = 1,那么 ord(ab) = mn。这是因为 a 和 b 的阶互质,所以 ab 的阶是它们阶的乘积。

对于第二十个问题:
A. n。这是正确的。

对于第二十一个问题:
在模 11 下,我们需要找到 5 的乘法逆元。乘法逆元定义为:如果 ab ≡ 1 (mod n),则 b 是 a 在模 n 下的乘法逆元。
计算 5 与选项中的每个整数相乘,然后取模 11,看哪个结果等于 1。
A. 2 × 5 ≡ 10 (mod 11)
B. 3 × 5 ≡ 15 (mod 11) ≡ 4 (mod 11)
C. 6 × 5 ≡ 30 (mod 11) ≡ 8 (mod 11)
D. 7 × 5 ≡ 35 (mod 11) ≡ 2 (mod 11)
因此,没有选项中的整数是 5 在模 11 下的乘法逆元。题目可能有误,因为 5 在模 11 下没有乘法逆元(因为 5 和 11 互质,但 5 的逆元应该是 9,不在选项中)。

对于第二十二个问题:
非交换群意味着存在至少一对元素 a 和 b,使得 ab ≠ ba。
A. 阶为 2 的元素:不一定存在。例如,四元群 {e, a, b, c} 其中 a² = b² = c² = e 且 ab = c, bc = a, ca = b 是一个非交换群,但没有阶为 2 的元素。
B. 阶为 3 的元素:同样不一定存在。上述四元群就是一个例子。
C. 非中心的元素:一定存在。因为如果所有元素都是中心的,那么对于任意 a, b ∈ G,都有 ab = ba,这与 G 是非交换群矛盾。
D. 唯一的单位元:这是所有群的基本性质,与群是否交换无关。
因此,答案是 C。

对于第二十三个问题:
如果对于任意 a ∈ R,都有 a² = 0,那么对于任意 a, b ∈ R,有 (a + b)² = a² + 2ab + b² = 0。由于 a² 和 b² 都是 0,我们得到 2ab = 0。因此,对于任意非零的 a, b ∈ R,我们都有 ab = 0,这意味着 R 是无零因子环。但更重要的是,由于 a² = 0 对所有 a ∈ R 成立,R 实际上是零环(即 R 中只有加法单位元)。
因此,答案是 C。

对于第二十四个问题:
如果 f(x) 在域 F 上有 n 个不同的根 a₁, a₂, ..., aₙ,那么根据多项式的基本定理,f(x) 可以表示为 (x - a₁)(x - a₂)...(x - aₙ)。
因此,答案是 A。

对于第二十五个问题:
在模 n 的剩余类环 Zn 中,如果 Zn 是域,那么 Zn 中没有零因子,且 Zn 的乘法单位元(即 1)在 Zn 中有乘法逆元。这意味着 n 必须是素数(因为如果 n 有除了 1 和它自身以外的因子,那么 Zn 中就会有零因子)。
因此,答案是 B。

对于第二十六个问题:
如果 gcd(f(x), g(x)) = 1,那么 f(x) 和 g(x) 在 F[x] 中是互质的,即它们没有非平凡的公因式。但这并不意味着它们的乘积是可约的、不可约的或首一的。它们的乘积是一个新的多项式,其首项系数是 f(x) 和 g(x) 首项系数的乘积,但除非我们知道 f(x) 和 g(x) 的具体形式,否则无法确定其是否可约或首一。
因此,答案是 D。

对于第二十七个问题:
如果 G 是一个阶为 pq 的群,其中 p 和 q 是不同的素数,且 G 中存在一个阶为 p 的元素 a,那么根据拉格朗日定理,a 的阶必须整除 G 的阶。由于 p 是素数且 p | pq,p 也是 pq 的因子。因此,除了单位元 e 外,还有至少 p-1 个阶为 p 的元素(即 a, a², ..., a^(p-1))。但这并不直接说明 G 中有阶为 q 的元素,也不说明 G 中元素的总数。
因此,答案是 A(至少包含 q 个阶为 p 的元素是不正确的,应该是至少包含 p-1 个这样的元素,但这里没有这个选项,可能是题目有误)。实际上,根据 Sylow 定理,G 中要么有

填空题解析

对于第一个问题:
设 G 是一个阶为 12 的群,且 G 中有一个阶为 3 的元素和一个阶为 4 的元素。

由于 G 的阶为 12,根据拉格朗日定理,G 中元素的阶必须是 12 的因子,即 1,2,3,4,6,12。

已知 G 中有阶为 3 和 4 的元素,因此 G 中元素的阶的最大可能值为 12(因为 12 是 3 和 4 的最小公倍数)。

答案:12

对于第二个问题:
若域 F 的特征为 p(p 是一个素数),则 F 中所有非零元素的阶都是 p。

这是因为在特征为 p 的域中,p⋅1=0,所以每个非零元素 a 满足 ap=(1⋅a)p=1p⋅ap=1⋅0=0。由于域中没有零因子,ap−1=0,因此 ap−1=a−1,即 a 的阶为 p。

答案:p

对于第三个问题:
设 Z 是整数加群,n 是正整数。在模 n 下,整数 7 的乘法逆元是 x,满足 7x≡1(modn)。

这取决于 n 的具体值。例如,如果 n=8,则 7×7≡1(mod8),所以 7 的乘法逆元是 7。如果 n=10,则 7 没有乘法逆元,因为不存在整数 x 使得 7x≡1(mod10)。

由于题目没有给出 n 的具体值,这个问题没有唯一答案。

答案:取决于 n 的值

对于第四个问题:
若环 R 的每个非零元素都是可逆的,则 R 是一个域。

这是域的定义之一:一个环,如果它的每个非零元素都有乘法逆元,则它是一个域。

答案:域

对于第五个问题:
若群 G 的阶为 35,则 G 中元素的阶最大可能为 35。

这是因为 35 是素数 5 和 7 的乘积,根据拉格朗日定理和柯西定理,G 中必然存在阶为 5 和 7 的元素。由于 5 和 7 互质,它们的乘积 35 也是 G 中元素的阶的可能值。

答案:35

对于第六个问题:
设 F 是一个域,F[x] 是 F 上的一元多项式环。若 f(x)=x3+2x2+x+1∈F[x],则 f(x) 的一个不可约因式取决于 F 的特性。

如果 F 是实数域或复数域,那么 f(x) 可能是不可约的。如果 F 是有理数域或其他某些域,f(x) 可能是可约的。没有 F 的具体信息,无法确定 f(x) 的不可约因式。

答案:取决于 F 的特性

对于第七个问题:
在模 7 下,3 的乘法逆元是 x,满足 3x≡1(mod7)。

计算可得 3×5≡15≡1(mod7),所以 3 的乘法逆元是 5。

答案:5

对于第八个问题:
设 Zn​ 是模 n 的剩余类环,若 Zn​ 是域,则 n 必须是素数。

这是因为如果 n 不是素数,那么 Zn​ 中存在非零的零因子(即存在两个非零元素,它们的乘积模 n 为零),这与域的定义矛盾。

答案:素数

对于第九个问题:
设 G 是一个阶为 21 的群,H 是 G 的一个阶为 3 的子群。

根据子群的指数定义,∣G:H∣=∣H∣∣G∣​。

代入已知条件,∣G:H∣=321​=7。

答案:7

对于第十个问题:
在模 7 下,整数 5 的乘法逆元是 x,满足 5x≡1(mod7)。

计算可得 5×3≡15≡1(mod7),所以 5 的乘法逆元是 3。

答案:3

对于第十一个问题:
设 R 是一个有单位元的环,若对于任意 a,b∈R,都有 a2=b2,则 a=±b 或 a=±ib(其中 i 是虚数单位)。

这个陈述在环 R 中成立的充要条件是 R 的特征为 2 或 R 包含虚数单位 i。但通常环的定义并不包含虚数单位,因此更常见的解释是 R 的特征为 2。

答案:特征为 2 的环

对于第十二个问题:
设 G 是一个阶为 30 的群,且 G 中包含一个阶为 3 的元素和一个阶为 5 的元素。

由于 30=2×3×5,根据柯西定理,G 中必然存在阶为 2 的元素。由于 2 是素数,且 22=4 不整除 30,根据 Sylow 第二定理,G 中阶为 2 的子群的个数 n2​ 满足 n2​≡1(mod2) 且 n2​ 整除 15。因此 n2​ 可以是 1 或 3 或 5 或 15。但每个阶为 2 的子群都包含两个不同的阶为 2 的元素(除了单位元),所以 G 中至少包含 1+2×(n2​−1) 个阶为 2 的元素。即使 n2​=1,G 中也至少有 3 个阶为 2 的元素(单位元加上子群中的两个元素)。

答案:至少 3 个

对于第十三个问题:
在模 13 下,整数 5 的乘法逆元是 x,满足 5x≡1(mod13)。

计算可得 5×5≡25≡12(mod13),然后 12×3≡36≡1(mod13),所以 5 的乘法逆元是 5×3=15≡2(mod13),即 2。

答案:2

对于第十四个问题:
设 Zn​ 是模 n 的剩余类环,若 Zn​ 是域,则 n 的值只能是素数。

这是因为在模 n 下,如果 n 不是素数,则存在非零的零因子(即存在两个非零元素,它们的乘积模 n 为零),这与域的定义矛盾。

答案:素数

对于第十五个问题:
设 R 是一个环,若对于任意 a,b∈R,都有 a2−b2=(a+b)(a−b),则 R 必定是交换环。

根据环的分配律,(a+b)(a−b)=a2−ab+ba−b2。由于 a2−b2=(a+b)(a−b),比较两侧,得到 ab=ba,即 R 是交换环。

答案:交换环

对于第十六个问题:
若群 G 的阶为 15,且包含一个阶为 3 的元素和一个阶为 5 的元素。

首先,阶为 1 的元素在任何群中都只有一个,即单位元。因此,G 中至少包含一个阶为 1 的元素。

答案:1

对于第十七个问题:
在模 7 下,整数 4 的乘法逆元是 x,满足 4x≡1(mod7)。

计算可得 4×2≡8≡1(mod7),所以 4 的乘法逆元是 2。

答案:2

对于第十八个问题:
设 F 是一个特征为 0 的域,则 F 上的一元多项式环 F[x] 是整环。

整环的定义是满足交换律、结合律、分配律,且存在单位元,且没有零因子的环。由于 F 是域,因此 F 上的一元多项式环 F[x] 自然满足整环的所有条件。

答案:整环

对于第十九个问题:
若环 R 的所有非零元素都是可逆的,则 R 称为域。

这是域的定义之一:一个环,如果它的每个非零元素都有乘法逆元,则它是一个域。

答案:域

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值