恩,DP题,我以前一直认为dp是那种两次方复杂度的解决方案,看到这题之后领悟了,其实只要能把复杂度降下来就可以了。这道题目算是背包问题,有两个限制条件:weight和size,然后有多个背包。最后呢,这些装备还可以合体之后升值。恩。。。我们用dp来解决一个背包的w,s是很简单的,但是这里就不行了,因为有好多背包。我们的转移方程是在第n-1个和第n个背包之间转换的,意思就是我知道前面n-1个背包全部装满时的所有可能情况,然后来计算第n个背包的情况。
转移公式是:f(n, i+x, j+y) = f(n-1, i, j) + k(n, x, y)。 这其中,i, j表示在n-1个背包中总共装了多少个helm和armor,然后x, y表示在第n个背包中装了多少helm和armor,f函数的返回结果是有多少的boot,k函数表示在第n个背包中,如果有x个helm和y个armor,那么还可以放多少boot。
恩,最后贴代码:
#include<cstring>
#include<iostream>
using namespace std;
const int MAX_CAP = 501;
const int MAX_CAR = 101;
int main()
{
#ifndef ONLINE_JUDGE
freopen("input.txt", "rt", stdin);
freopen("output.txt", "wt+", stdout);
#endif
int carNo;
int m[2][MAX_CAP][MAX_CAP];
int wn[MAX_CAR], ws[MAX_CAR];
int helm[3], armor[3], boot[3];
int c1, c2, c3, d4;
int index = 1;
while(cin >> carNo)
{
if(!carNo)
{
break;
}
cin >> helm[0] >> helm[1] >> helm[2];
cin >> armor[0] >> armor[1] >> armor[2];
cin >> boot[0] >> boot[1] >> boot[2];
cin >> c1 >> c2 >> c3 >> d4;
for(int i=0;i<carNo;i++)
{
cin >> wn[i] >> ws[i];
}
int maxHelm = 0, maxArmor = 0;
int prev = 0, now =1;
memset(m, 0, sizeof(m));
for(int loop =0;loop<carNo;loop++)
{
memset(m[now], -1, sizeof(m[now]));
int hemlx = min(wn[loop]/helm[0], ws[loop]/helm[1]);
for(int i=0; i<=hemlx;i++)
{
int armorx = min( (wn[loop]-helm[0]*i)/armor[0], (ws[loop] - helm[1]*i)/armor[1]);
for(int j=0;j<=armorx;j++)
{
int bootx = min( (wn[loop] - helm[0]*i - armor[0]*j)/boot[0], (ws[loop]-helm[1]*i-armor[1]*j)/boot[1]);
for(int a=0;a<=maxHelm;a++)
{
for(int b=0;b<=maxArmor;b++)
{
if(m[prev][a][b] != -1)
{
m[now][a+i][b+j] = max(m[now][a+i][b+j], m[prev][a][b] + bootx);
}
}
}
}
}
maxHelm += hemlx;
maxArmor += min(wn[loop]/armor[0], ws[loop]/armor[1]);
swap(prev, now);
}
int ans = 0;
for(int i=0;i<=maxHelm;i++)
{
for(int j=0;j<=maxArmor;j++)
{
if(m[prev][i][j] < 0)
{
continue;
}
int sets = min(min(i/c1, j/c2), m[prev][i][j]/c3);
ans = max(ans, sets*d4 + helm[2]*(i-sets*c1) + armor[2]*(j-sets*c2) + boot[2]*(m[prev][i][j] - sets*c3));
}
}
if(index >1)
{
cout << endl;
}
cout << "Case " << index++ << ": "<< ans << endl;
}
}