zoj 1013 Great Equipment

恩,DP题,我以前一直认为dp是那种两次方复杂度的解决方案,看到这题之后领悟了,其实只要能把复杂度降下来就可以了。这道题目算是背包问题,有两个限制条件:weight和size,然后有多个背包。最后呢,这些装备还可以合体之后升值。恩。。。我们用dp来解决一个背包的w,s是很简单的,但是这里就不行了,因为有好多背包。我们的转移方程是在第n-1个和第n个背包之间转换的,意思就是我知道前面n-1个背包全部装满时的所有可能情况,然后来计算第n个背包的情况。

转移公式是:f(n, i+x, j+y) = f(n-1, i, j)  + k(n, x, y)。 这其中,i, j表示在n-1个背包中总共装了多少个helm和armor,然后x, y表示在第n个背包中装了多少helm和armor,f函数的返回结果是有多少的boot,k函数表示在第n个背包中,如果有x个helm和y个armor,那么还可以放多少boot。

恩,最后贴代码:

#include<cstring>
#include<iostream>
using namespace std;

const int MAX_CAP = 501;
const int MAX_CAR = 101;

int main()
{
#ifndef ONLINE_JUDGE
	freopen("input.txt", "rt", stdin);
	freopen("output.txt", "wt+", stdout);
#endif

	int carNo;
	int m[2][MAX_CAP][MAX_CAP];
	int wn[MAX_CAR], ws[MAX_CAR];
	int helm[3], armor[3], boot[3];
	int c1, c2, c3, d4;
	int index = 1;
	while(cin >> carNo)
	{
		if(!carNo)
		{
			break;
		}
		cin >> helm[0] >> helm[1] >> helm[2];
		cin >> armor[0] >> armor[1] >> armor[2];
		cin >> boot[0] >> boot[1] >> boot[2];
		cin >> c1 >> c2 >> c3 >> d4;
		
		for(int i=0;i<carNo;i++)
		{
			cin >> wn[i] >> ws[i];
		}

		int maxHelm = 0, maxArmor = 0;
		int prev = 0, now =1;
		memset(m, 0, sizeof(m));
		for(int loop =0;loop<carNo;loop++)
		{
			memset(m[now], -1, sizeof(m[now]));
			int hemlx = min(wn[loop]/helm[0], ws[loop]/helm[1]);
			for(int i=0; i<=hemlx;i++)
			{
				int armorx = min( (wn[loop]-helm[0]*i)/armor[0], (ws[loop] - helm[1]*i)/armor[1]);
				for(int j=0;j<=armorx;j++)
				{
					int bootx = min( (wn[loop] - helm[0]*i - armor[0]*j)/boot[0], (ws[loop]-helm[1]*i-armor[1]*j)/boot[1]);
					for(int a=0;a<=maxHelm;a++)
					{
						for(int b=0;b<=maxArmor;b++)
						{
							if(m[prev][a][b] != -1)
							{
								m[now][a+i][b+j] = max(m[now][a+i][b+j], m[prev][a][b] + bootx);
							}
						}
					}
				}
			}
			maxHelm += hemlx;
			maxArmor += min(wn[loop]/armor[0], ws[loop]/armor[1]);
			swap(prev, now);
		}

		int ans = 0;
		for(int i=0;i<=maxHelm;i++)
		{
			for(int j=0;j<=maxArmor;j++)
			{
				if(m[prev][i][j] < 0)
				{
					continue;
				}
				int sets = min(min(i/c1, j/c2), m[prev][i][j]/c3);
				ans = max(ans, sets*d4 + helm[2]*(i-sets*c1) + armor[2]*(j-sets*c2) + boot[2]*(m[prev][i][j] - sets*c3));
			}
		}

		if(index >1)
		{
			cout << endl;
		}
		cout << "Case " << index++ << ": "<< ans << endl;
	}
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值