2020-09-26

《模式识别》第四版(希腊)西奥多里蒂斯第二章习题2.34题解

证明: 设 ω 1 \omega_{1} ω1 ω 2 \omega_{2} ω2的条件概率密度函数如图所示, 它们的中心分别为 ( ∓ a , 0 ) (\mp a,0) (a,0), 半径都是 r r r, 并且 2 a > 4 r 2a > 4r 2a>4r, 即 a > 2 r a > 2r a>2r.
在这里插入图片描述
x 1 \boldsymbol{x}_{1} x1, x 2 \boldsymbol{x}_{2} x2, …, x N \boldsymbol{x}_{N} xN为训练样本, x \boldsymbol{x} x是待分类的数据, 不妨设训练样本是独立的, 并且待分类点 x \boldsymbol{x} x与训练样本是独立的. 由于 x \boldsymbol{x} x或者属于 ω 1 \omega_{1} ω1, 或者属于 ω 2 \omega_{2} ω2, 所以可以认为先验概率 P { ω 1 } = P { ω 2 } = 1 / 2 P\{\omega_{1}\}=P\{\omega_{2}\}=1/2 P{ω1}=P{ω2}=1/2. 用 e N N e_{\mathrm{NN}} eNN e k N N e_{k\mathrm{NN}} ekNN分别表示NN分类器和 k k kNN分类器的误判概率. 先计算 e N N e_{\mathrm{NN}} eNN. 设 x ′ \boldsymbol{x}' x是待分类数据 x \boldsymbol{x} x的最近邻点. 那么
e N N = P { x ∈ ω 1 , x ′ ∈ ω 2 } + P { x ∈ ω 2 , x ′ ∈ ω 1 } = P { x ∈ ω 1 } P { x ′ ∈ ω 2 ∣ x ∈ ω 1 } + P { x ∈ ω 2 } P { x ′ ∈ ω 1 ∣ x ∈ ω 2 } = 1 2 P { x ′ ∈ ω 2 ∣ x ∈ ω 1 } + 1 2 P { x ′ ∈ ω 1 ∣ x ∈ ω 2 } \begin{array}{rl} e_{\mathrm{NN}}&=P\{\boldsymbol{x}\in\omega_{1},\boldsymbol{x}'\in\omega_{2}\}+P\{\boldsymbol{x}\in\omega_{2},\boldsymbol{x}'\in\omega_{1}\}\\ &=P\{\boldsymbol{x}\in\omega_{1}\}P\{\boldsymbol{x}'\in\omega_{2}|\boldsymbol{x}\in\omega_{1}\}\\ &\hspace{4mm}+P\{\boldsymbol{x}\in\omega_{2}\}P\{\boldsymbol{x}'\in\omega_{1}|\boldsymbol{x}\in\omega_{2}\}\\ &=\frac{1}{2}P\{\boldsymbol{x}'\in\omega_{2}|\boldsymbol{x}\in\omega_{1}\}+\frac{1}{2}P\{\boldsymbol{x}'\in\omega_{1}|\boldsymbol{x}\in\omega_{2}\} \end{array} eNN=P{xω1,xω2}+P{xω2,xω1}=P{xω1}P{xω2xω1}+P{xω2}P{xω1xω2}=21P{xω2xω1}+21P{xω1xω2}
由于 a > 2 r a>2r a>2r, 给定 x ∈ ω 1 \boldsymbol{x}\in\omega_{1} xω1, 如果 x ′ ∈ ω 2 \boldsymbol{x}'\in\omega_{2} xω2, 则 ∥ x − x ′ ∥ > 2 r \|\boldsymbol{x}-\boldsymbol{x}'\|>2r xx>2r. 因此, 给定 x ∈ ω 1 \boldsymbol{x}\in\omega_{1} xω1, 当 x ′ ∈ ω 2 \boldsymbol{x}'\in\omega_{2} xω2时, 所有训练样本都属于 ω 2 \omega_{2} ω2. 若不然, 存在训练样本 x i \boldsymbol{x}_{i} xi, x i ≠ x ′ \boldsymbol{x}_{i}\neq\boldsymbol{x}' xi=x, x i ∈ ω 1 \boldsymbol{x}_{i}\in\omega_{1} xiω1, 则 ∥ x i − x ∥ ≤ 2 r \|\boldsymbol{x}_{i}-\boldsymbol{x}\|\leq2r xix2r, 这与 x ′ \boldsymbol{x}' x是最近邻点矛盾. 因此所有训练样本都属于 ω 2 \omega_{2} ω2. 反之, 当所有的训练样本都属于 ω 2 \omega_{2} ω2时, 则一定有 x ′ ∈ ω 2 \boldsymbol{x}'\in\omega_{2} xω2.
因此, 给定 x ∈ ω 1 \boldsymbol{x}\in\omega_{1} xω1下, { x ′ ∈ ω 2 } = { x i ∈ ω 2 , i = 1 , 2 , . . . , N } \{\boldsymbol{x}'\in\omega_{2}\}=\{\boldsymbol{x}_{i}\in\omega_{2},i=1,2,...,N\} {xω2}={xiω2,i=1,2,...,N}.
所以利用训练样本的独立性得到
P { x ′ ∈ ω 2 ∣ x ∈ ω 1 } = P { x i ∈ ω 2 , i = 1 , 2 , . . . , N } = ∏ i = 1 N P { x i ∈ ω 2 } = ( 1 2 ) N \begin{array}{rl} P\{\boldsymbol{x}'\in\omega_{2}|\boldsymbol{x}\in\omega_{1}\} &=P\{\boldsymbol{x}_{i}\in\omega_{2},i=1,2,...,N\}\\ &=\prod^{N}_{i=1} P\{\boldsymbol{x}_{i}\in\omega_{2}\}=\Big(\frac{1}{2}\Big)^{N} \end{array} P{xω2xω1}=P{xiω2,i=1,2,...,N}=i=1NP{xiω2}=(21)N
同理
P { x ′ ∈ ω 1 ∣ x ∈ ω 2 } = ( 1 2 ) N P\{\boldsymbol{x}'\in\omega_{1}|\boldsymbol{x}\in\omega_{2}\}=\Big(\frac{1}{2}\Big)^{N} P{xω1xω2}=(21)N
从而
e N N = 1 2 ( 1 2 ) N + 1 2 ( 1 2 ) N = ( 1 2 ) N e_{\mathrm{NN}}=\frac{1}{2}\Big(\frac{1}{2}\Big)^{N}+\frac{1}{2}\Big(\frac{1}{2}\Big)^{N}=\Big(\frac{1}{2}\Big)^{N} eNN=21(21)N+21(21)N=(21)N
现在考虑 e k N N e_{k\mathrm{NN}} ekNN. 由于 k k k一般是奇数, 所以记 k = 2 k 0 + 1 k=2k_{0}+1 k=2k0+1. 那么当 x ∈ ω 1 \boldsymbol{x}\in\omega_{1} xω1时,
N N N个训练样本属于 ω 1 \omega_{1} ω1的个数不多于 k 0 k_{0} k0时, 则 k k kNN法则会将 x \boldsymbol{x} x归类到 ω 2 \omega_{2} ω2, 于是出现误判. 因此
e k N N = P { x ∈ ω 1 ,    N 个训练样本属于 ω 1 的个数不多于 k 0 } + P { x ∈ ω 2 ,    N 个训练样本属于 ω 2 的个数不多于 k 0 } = P { x ∈ ω 1 } P { N 个训练样本属于 ω 1 的个数不多于 k 0    ∣ x ∈ ω 1 } + P { x ∈ ω 2 } P { N 个训练样本属于 ω 2 的个数不多于 k 0    ∣ x ∈ ω 2 } = 1 2 P { N 个训练样本属于 ω 1 的个数不多于 k 0    ∣ x ∈ ω 1 } + 1 2 P { N 个训练样本属于 ω 2 的个数不多于 k 0    ∣ x ∈ ω 2 } \begin{array}{rl} e_{k\mathrm{NN}} &=P\{\boldsymbol{x}\in\omega_{1},\;N\texttt{个训练样本属于}\omega_{1}\texttt{的个数不多于}k_{0}\}\\ &\hspace{4mm}+P\{\boldsymbol{x}\in\omega_{2},\;N\texttt{个训练样本属于}\omega_{2}\texttt{的个数不多于}k_{0}\}\\ &=P\{\boldsymbol{x}\in\omega_{1}\}P\{N\texttt{个训练样本属于}\omega_{1}\texttt{的个数不多于}k_{0}\;|\boldsymbol{x}\in\omega_{1}\}\\ &\hspace{4mm}+P\{\boldsymbol{x}\in\omega_{2}\}P\{N\texttt{个训练样本属于}\omega_{2}\texttt{的个数不多于}k_{0}\;|\boldsymbol{x}\in\omega_{2}\}\\ &=\frac{1}{2}P\{N\texttt{个训练样本属于}\omega_{1}\texttt{的个数不多于}k_{0}\;|\boldsymbol{x}\in\omega_{1}\}\\ &\hspace{4mm}+\frac{1}{2}P\{N\texttt{个训练样本属于}\omega_{2}\texttt{的个数不多于}k_{0}\;|\boldsymbol{x}\in\omega_{2}\} \end{array} ekNN=P{xω1,N个训练样本属于ω1的个数不多于k0}+P{xω2,N个训练样本属于ω2的个数不多于k0}=P{xω1}P{N个训练样本属于ω1的个数不多于k0xω1}+P{xω2}P{N个训练样本属于ω2的个数不多于k0xω2}=21P{N个训练样本属于ω1的个数不多于k0xω1}+21P{N个训练样本属于ω2的个数不多于k0xω2}
所以利用 x \boldsymbol{x} x与训练样本的独立性, 以及训练样本的独立性, 得到
P { N 个训练样本属于 ω 1 的个数不多于 k 0 ∣ x ∈ ω 1 } = P { N 个训练样本属于 ω 1 的个数不多于 k 0 } = P { N 个训练样本属于 ω 1 的个数为零 } + P { N 个训练样本属于 ω 1 的个数为 1 } + ⋯ + P { N 个训练样本属于 ω 1 的个数为 k 0 } = ∑ j = 1 k 0 (  ⁣ ⁣ N j  ⁣ ⁣ ) ( 1 2 ) j ( 1 − 1 2 ) N − j = ( 1 2 ) N ∑ j = 1 k 0 (  ⁣ ⁣ N j  ⁣ ⁣ ) \begin{array}{rl} &P\{N\texttt{个训练样本属于}\omega_{1}\texttt{的个数不多于}k_{0}|\boldsymbol{x}\in\omega_{1}\}\\ &=P\{N\texttt{个训练样本属于}\omega_{1}\texttt{的个数不多于}k_{0}\}\\ &=P\{N\texttt{个训练样本属于}\omega_{1}\texttt{的个数为零}\}\\ &\hspace{4mm}+P\{N\texttt{个训练样本属于}\omega_{1}\texttt{的个数为}1\}\\ &\hspace{4mm}+\cdots+P\{N\texttt{个训练样本属于}\omega_{1}\texttt{的个数为}k_{0}\}\\ &=\sum^{k_{0}}_{j=1} \Big(\!\! \begin{array}{c} N \\ j \end{array}\!\!\Big) \big(\frac{1}{2}\big)^{j}\big(1-\frac{1}{2}\big)^{N-j}\\ &=\big(\frac{1}{2}\big)^{N}\sum^{k_{0}}_{j=1} \Big(\!\! \begin{array}{c} N \\ j \end{array}\!\!\Big) \end{array} P{N个训练样本属于ω1的个数不多于k0xω1}=P{N个训练样本属于ω1的个数不多于k0}=P{N个训练样本属于ω1的个数为零}+P{N个训练样本属于ω1的个数为1}++P{N个训练样本属于ω1的个数为k0}=j=1k0(Nj)(21)j(121)Nj=(21)Nj=1k0(Nj)
同理
P { N 个训练样本属于 ω 2 的个数不多于 k 0 ∣ x ∈ ω 2 } = ( 1 2 ) N ∑ j = 1 k 0 (  ⁣ ⁣ N j  ⁣ ⁣ ) \begin{array}{rl} &P\{N\texttt{个训练样本属于}\omega_{2}\texttt{的个数不多于}k_{0}|\boldsymbol{x}\in\omega_{2}\}\\ &=\big(\frac{1}{2}\big)^{N}\sum^{k_{0}}_{j=1} \Big(\!\! \begin{array}{c} N \\ j \end{array}\!\!\Big) \end{array} P{N个训练样本属于ω2的个数不多于k0xω2}=(21)Nj=1k0(Nj)
因此
e k N N = 1 2 ( 1 2 ) N ∑ j = 1 k 0 (  ⁣ ⁣ N j  ⁣ ⁣ ) + 1 2 ( 1 2 ) N ∑ j = 1 k 0 (  ⁣ ⁣ N j  ⁣ ⁣ ) = ( 1 2 ) N ∑ j = 1 k 0 (  ⁣ ⁣ N j  ⁣ ⁣ ) \begin{array}{rl} e_{k\mathrm{NN}}=&\frac{1}{2}\Big(\frac{1}{2}\Big)^{N}\sum^{k_{0}}_{j=1} \Big(\!\! \begin{array}{c} N \\ j \end{array}\!\!\Big)+\frac{1}{2}\Big(\frac{1}{2}\Big)^{N}\sum^{k_{0}}_{j=1} \Big(\!\! \begin{array}{c} N \\ j \end{array}\!\!\Big)\\ &=\Big(\frac{1}{2}\Big)^{N}\sum^{k_{0}}_{j=1} \Big(\!\! \begin{array}{c} N \\ j \end{array}\!\!\Big) \end{array} ekNN=21(21)Nj=1k0(Nj)+21(21)Nj=1k0(Nj)=(21)Nj=1k0(Nj)
k ≥ 3 k\geq3 k3时, k 0 ≥ 1 k_{0}\geq1 k01, 所以 e k N N > e N N e_{k\mathrm{NN}}>e_{\mathrm{NN}} ekNN>eNN.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值