题目:输入一段int型数据流,输入未完成之前并不知道数据流的长度,要求在O(1)空间复杂度的前提下随机选出一个元素,并保证每一个元素被选中的概率是一样的。
我的解法如下:
假如输入的数据流依次是10、20、30、40、……
收到10时:以概率1选择10;
收到20时:以概率1/2选择10,以概率1/2选择20;
收到30时:以概率2/3选择上一次选到的元素,以概率1/3选择30;
收到40时:以概率3/4选择上一次选到的元素,以概率1/4选择40;
……
收到第N个数时:以概率(n-1)/n选择上一次选到的元素,以概率1/n选择当前元素。
进阶题:那么如何等概率选取k个数呢?
解法类似,先以概率1选取前k个数,然后:
对于第k+1个数,以k/(k+1)的概率选择它,如果被选中,则随机替换原来的k个数中的一个;
对于第k+2个数,以k/(k+2)的概率选择它,如果被选中,则随机替换原来的k个数中的一个;
……
对于第N个数,以k/N的概率选择它,如果被选中,则随机替换原来的k个数中的一个。