- 博客(6)
- 收藏
- 关注
原创 智能体学习
大模型智能体通过与真实世界、环境或其他模型的交互,展现出通用能力,为实现更高层次的智能代理提供了基础。智能体的设计包括控制端(Brain)、感知端(Perception)和行动端(Action),它们共同构成了智能体的通用框架,使智能体能够适应环境,进行有效互动。大模型的发展背景与自然语言处理(NLP)的进化史紧密相关,从统计语言模型到预训练语言模型,再到如今的大语言模型,它们在理解和创作文本方面的能力甚至超过了人类。掌握Prompt工程技能,可以提升大语言模型处理复杂任务的能力,如问答和算术推理。
2024-08-24 10:42:29
288
原创 个人python学习问题记录
在 Python 中,几乎所有的序列类型都是可迭代的,包括字符串、列表、元组、字典等。一个对象被认为是可迭代的,如果它实现了__iter__()方法或者方法。这意味着 Python 可以使用内置的iter()函数来获取一个迭代器,进而遍历该对象。实现了迭代器协议:可迭代对象必须实现__iter__()方法,该方法返回一个迭代器。迭代器是一个具有__next__()方法的对象,用于返回下一个元素,直到所有元素都被返回完毕。支持索引访问:如果可迭代对象还实现了。
2024-08-05 17:46:52
1679
原创 大模型个人摘要
大语言模型(Large Language Models,简称LLMs)是当前人工智能领域的热点技术,它们通过学习海量文本数据,能够理解和生成自然语言文本。定义与规模:大语言模型通常指的是在大规模文本语料上训练、包含百亿级别(或更多)参数的语言模型,例如GPT-3、PaLM、LLaMA等。这些模型的规模和复杂性使得它们能够捕捉到语言的细微之处,并展现出强大的语言理解和生成能力。11架构与原理:大语言模型基于Transformer架构,利用自注意力机制处理长距离依赖关系。
2024-08-04 11:08:26
533
原创 阿里云天池学习笔记
训练集测试集验证集 2.数据中的无效数据进行删除或更改、 3.根据数据之间的联系划分出离散数据和连续数据 编码是一种常用的数据预处理技术,特别是在处理分类特征时。定义:目的:原理:实现:应用:优点:缺点:处理有序数据:稀疏性:在模型中的应用:预处理步骤:通过走梯度的负方向并以恰当的步长来调整各个数据的权重,来拟合数据,得到更准确的预测结果。
2024-07-28 15:57:54
433
原创 个人pandas学习笔记
Pandas 是基于 NumPy 的一个数据分析库,提供了快速、灵活和表达力强的数据结构,旨在使数据清洗和分析工作变得更加简单易行。
2024-07-22 19:56:12
1341
原创 python学习笔记
Python 3.6 引入了 f-string,提供了更简洁和直观的格式化方式。循环用于遍历序列(如列表、元组、字典、集合、字符串)或迭代其他可迭代对象。整型、浮点型、列表、布尔类型、元组、集合、字典类型。循环根据条件重复执行代码块,直到条件不再为真。可以格式化字典映射。
2024-07-17 21:44:34
1665
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人