基于多物理参数数据融合和先进人工智能算法的锂电池热失控监测传感器是多种方案中的优选项!是一种快速、准确、可靠、应用广泛的传感方案!可有效监测锂离子电池热失控风险,保障化学能储能电站安全!
●研究:热失控的机理、特征、危险性和热失控监测技术的发展情况
▷什么是电池热失控?
电化学电池以不可控制的方式通过自加热升高其温度的事故即为热失控。
▷ 什么是热失控扩散?
热失控电池产生的热量高于它可以消散的热量时,热量进一步积累,可能导致火灾,爆炸和气体释放。如果电池系统中,由于一个电芯产生热失控而引发其他电芯热失控,即为热失控扩散。国家标准GB/T 36276—2018中给出的热失控扩散定义如表2所示。
●基于多物理参数数据融合和先进人工智能算法的热失控监测传感器
▷基于多物理参数数据融合和先进人工智能算法的热失控监测传感器介绍
自主可控的基于多物理参数数据融合和先进人工智能算法的锂电池热失控监测传感器,其创新的采用气压力、VOC、CO、CO2、温度多物理参数做数据融合,采用先进的人工智能AI神经网络算法,设计了一款具有边缘计算能力的锂电池热失控传感器,该传感器具有快速、准确、可靠、应用广泛等优点!可有效监测
传感器结构爆炸图
▷基于多物理参数数据融合和先进人工智能算法的锂电池热失控监测传感器采用基于大数据及先进人工智能的算法,传感监测技术基于多物理参数的电池热失控预警大数据模型:
基于大数据的锂电池故障诊断模型,包括信号分析以消除噪声,优化状态不一致性对时间序列特征提取的影响,物理数据特征融合和流形学习降维,以及基于聚类的离群点检测以识别异常信号特征,通过优化模型可以有效解决多维数据融合特征阈值难以精准确定的问题。
AI神经网络算法输入层神经元向量映射到隐层,隐层的神经元为m个,得到输出层神经元向量为o:
传感器采用的人工智能神经网络算法:在该AI人工神经网络中,信息的处理是由神经元之间的相互作用来实现的,知识与信息的存储表现为网络元件互连间分布式的物理联系,网络的学习和识别取决于和神经元连接权值的动态演化过程。将AI神经网络算法应用于锂电池热失控多数据融合成功解决了快速、准确进行锂电池热失控判断、识别的技术瓶颈。
▷