- 博客(6)
- 收藏
- 关注
原创 随机优化工具 Stochastic Optimization Techniques
@(Paper summaries)[Neural Networks|Optimization]Stochastic Gradient DescentMomentumNesterovs Accelerated GradientAdagradRMSPropAdadeltaAdamESGDAdasecantvSGDRpropNeu
2015-09-29 09:33:50 1465
原创 Degrees of freedom
Degrees of freedom in linear models[edit] The demonstration of the t and chi-squared distributions for one-sample problems above is the simplest example where degrees-of-freedom arise. However, simila
2015-09-02 10:27:36 1424
原创 stepwise算法
原始的交叉矩阵的q行q列进行sweep变换: 可以看到sweep之后,原本叉乘矩阵的位置变成了它的逆矩阵,而第一行residueSS向量的第0个元素表示的是RSSqRSS_q,剩下的表示的是系数。 如果我们想将q个变量扩充成q+1q+1个变量,可以参考下图: 首先将ZZ分解为两部分:Z=Z1+Z2Z = Z_1+Z_2, Z1=(I−H)ZZ_1 = (I-H)Z,Z2=HZZ_2
2015-08-24 00:32:42 3282
原创 A Tutorial on the SWEEP Operator–读书笔记
算法原理对线性回归的最小二乘解,涉及到求矩阵的逆(XTX)−1(X^TX)^{-1}, 1.原始的矩阵求逆的方法–Gauss Jordan消去法,使用计算机来求解时,需要开辟另一个内存,存放变化时的右矩阵A−1A^{-1}. 2.sweep算法对高斯约旦消去法的一种改进,它可以节省存储空间,不需要开辟内存单独存放右矩阵。下面使用三阶例子来说明:(1)对于矩阵A,其扩展矩阵[A|I][A|I]
2015-07-08 14:53:35 1520
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人