sql实例

关联三张表

<!-- 查询(根据查询条件分页查询) -->

<select id="getListMapPage" resultType="hashmap" parameterType="hashmap">

SELECT

tdmm.id as id,

tdmm.delivery_man_id as deliveryManId,

tdmm.customer_id as customerId,

tdmm.open_id as openId,

 

tdm.id as customerId,

tdm.login_name as customerLoginName,

tdm.real_name as customerRealName,

 

tc.id as deliveryManId,

tc.login_name as deliveryManLoginName,

tc.real_name as deliveryManRealName

 

FROM table1 tdmm

LEFT JOIN table2 tdm  on(tdmm.delivery_man_id=tc.id)                     左关联

LEFT JOIN table3 tc     on(tdmm.customer_id=tdm.id)

WHERE tdmm.status = 1 条件

limit ${(page-1)*pagesize},${pagesize}

</select>

转载于:https://my.oschina.net/u/3377023/blog/881946

Spark SQL 是 Apache Spark 的一个模块,用于处理结构化数据。它提供了 SQL 和 DataFrame API 的支持,并且可以无缝地整合在 Spark 程序中。使用 Spark SQL,可以执行 SQL 查询,也可以通过 DataFrame API 在 Scala、Java、Python 或 R 语言中进行数据操作。 下面是一个简单的Spark SQL实例,展示了如何使用Spark SQL读取JSON格式的数据文件,并进行简单的查询操作: ```scala import org.apache.spark.sql.SparkSession // 创建SparkSession对象,这是Spark SQL的入口点 val spark = SparkSession.builder() .appName("Spark SQL Basic Example") .master("local[*]") // 本地运行,[*]表示使用所有可用的核心 .getOrCreate() // 加载一个JSON文件作为数据源,这里的路径需要根据实际文件位置来指定 val peopleDF = spark.read.json("路径/to/people.json") // 使用DataFrame API进行查询 peopleDF.select("name", "age").show() // 注册为一个临时表,使用SQL语法进行查询 peopleDF.createOrReplaceTempView("people") valSQL = "SELECT name FROM people WHERE age BETWEEN 13 AND 19" spark.sql(SQL).show() // 停止SparkSession spark.stop() ``` 在这个实例中,我们首先创建了一个SparkSession对象,它是一个面向用户的入口点来操作Spark SQL。然后,我们读取了一个名为`people.json`的文件,这个文件应该包含JSON格式的数据,并且假设它有`name`和`age`字段。接着,我们使用了DataFrame API 来展示`name`和`age`字段,并将数据注册为一个临时表,这样我们就可以使用SQL语句进行查询。最后,执行了一个SQL查询,并显示了结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值