DataFrame 窗口函数rolling()

在数据开发最经常会用到将最近几个值相加、求平均等操作,类似SQL的group by,在Dataframe中使用rolling操作简单、计算效率高

官方文档链接

DataFrame.rolling(window, min_periods=None, center=False, win_type=None, on=None, axis=0, closed=None)

参数说明:

  • window:时间窗的大小,数值int,即向前几个数据(可以理解将最近的几个值进行group by)
  • min_periods:最少需要有值的观测点的数量,对于int类型,默认与window相等
  • center:把窗口的标签设置为居中,布尔型,默认False
  • win_type: 窗口的类型,截取窗的各种函数。字符串类型,默认为None
  • on: 可选参数,对于dataframe而言,指定要计算滚动窗口的列,值为列名
  • closed:定义区间的开闭,支持int类型的window,对于offset类型默认是左开右闭的即默认为right,可以根据情况指定为left、both等
  • axis:方向(轴),一般都是0

示例代码:

# -*- coding:utf-8 -*-
import pandas as pd
import numpy as np

# 创建DF
df = pd.DataFrame(np.random.randint(5, size=(10, 2)), index=pd.date_range('1/1/2020', periods=10), columns=['A', 'B'])
# 将B列最近2个值相加并生成新列
df['C'] = df['B'].rolling(window=2).sum()
# 将B列最近5个值相加并生成新列
df['D'] = df['B'].rolling(window=5).sum()

# 将B列最近2个值求平均并生成新列
df['E'] = df['B'].rolling(window=2).mean()
# 将B列最近5个值求平均并生成新列
df['F'] = df['B'].rolling(window=5).mean()

print(df)

输出结果:

            A  B    C    D    E    F
2020-01-01  4  0  NaN  NaN  NaN  NaN
2020-01-02  4  1  1.0  NaN  0.5  NaN
2020-01-03  1  4  5.0  NaN  2.5  NaN
2020-01-04  2  2  6.0  NaN  3.0  NaN
2020-01-05  0  1  3.0  8.0  1.5  1.6
2020-01-06  2  1  2.0  9.0  1.0  1.8
2020-01-07  4  1  2.0  9.0  1.0  1.8
2020-01-08  3  0  1.0  5.0  0.5  1.0
2020-01-09  3  4  4.0  7.0  2.0  1.4
2020-01-10  3  3  7.0  9.0  3.5  1.8

常用聚合函数:

  • mean() 求平均
  • count() 非空观测值数量
  • sum() 值的总和
  • median() 值的算术中值
  • min() 最小值
  • max() 最大
  • std() 贝塞尔修正样本标准差
  • var() 无偏方差
  • skew() 样品偏斜度(三阶矩)
  • kurt() 样品峰度(四阶矩)
  • quantile() 样本分位数(百分位上的值)
  • cov() 无偏协方差(二元)
  • corr() 相关(二进制)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值