LM Studio 本地部署大模型,Error: fetch failed 的处理

1、LM Studio安装后,默认路径"C:\Users\你的用户名\AppData\Local\LM-Studio"

2、vs code 打开安装目录,信任,将该目录下文件中所有 huggingface.co替换为Huggingface的镜像网站hf-mirror.com

3、愉快地搜索

### 解决 Hugging Face API 获取结果时遇到的错误 当使用 Hugging Face Inference API 遇到 `fetch failed` 错误时,可以采取多种方法来解决问题。对于 LM Studio 用户而言,在尝试从 Hugging Face 调用预训练模型进行推理的过程中遇到了网络连接问题,这通常是因为访问 huggingface.co 受到了限制。 为了克服这一障碍,建议修改 VS Code 中的相关配置: 1. **更改 URL 地址** 使用VS Code打开LM Studio的安装目录,并设置对该目录的信任。接着,找到并编辑涉及请求发送至官方站点的部分,将所有的 `huggingface.co` 替换为镜像网站 `hf-mirror.com`[^3]。 2. **验证API密钥** 确认用于认证的API Token是有效的,并且具有足够的权限来进行所需的API调用操作。如果不确定,则应重新生成一个新的Token以确保其有效性。 3. **检查网络环境** 测试当前使用的互联网连接是否稳定以及能否正常浏览其他网页;另外也可以考虑切换不同的网络供应商或者启用代理服务器辅助访问外部资源。 4. **更新依赖库** 如果项目中集成了特定版本的Python包或其他第三方组件,请确认这些软件包已经升级到了最新状态,因为旧版可能存在兼容性方面的问题而导致失败。 5. **查看文档指南** 官方提供的开发手册里往往包含了详细的故障排查章节,里面列举了许多常见异常现象及其对应的解决方案,按照指示逐步执行有助于更快定位原因所在。 ```python import os from transformers import pipeline, set_seed set_seed(42) # 设置环境变量指向国内源 os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' classifier = pipeline('sentiment-analysis') result = classifier("I love you") print(result) ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值