第5课:基于案例一节课贯通Spark Streaming流计算框架的运行源码

本期内容:

在线动态计算分类最热门商品案例回顾与演示

基于案例贯通Spark Streaming的运行源码

一、案例代码

在线动态计算电商中不同类别中最热门的商品排名,例如:手机类别中最热门的三种手机、电视类别中最热门的三种电视等

package com.dt.spark.sparkstreaming
import org.apache.spark.SparkConf
import org.apache.spark.sql.Row
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
  * 使用Spark Streaming+Spark SQL来在线动态计算电商中不同类别中最热门的商品排名,例如手机这个类别下面最热门的三种手机、电视这个类别
  * 下最热门的三种电视,该实例在实际生产环境下具有非常重大的意义;
  * @author DT大数据梦工厂
  * 新浪微博:http://weibo.com/ilovepains/
  * 实现技术:Spark Streaming+Spark SQL,之所以Spark Streaming能够使用ML、sql、graphx等功能是因为有foreachRDD和Transform
  * 等接口,这些接口中其实是基于RDD进行操作,所以以RDD为基石,就可以直接使用Spark其它所有的功能,就像直接调用API一样简单。
  *  假设说这里的数据的格式:user item category,例如Rocky Samsung Android
  */
object OnlineTheTop3ItemForEachCategory2DB {
  def main(args: Array[String]){
    /**
      * 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,
      * 例如说通过setMaster来设置程序要链接的Spark集群的Master的URL,如果设置
      * 为local,则代表Spark程序在本地运行,特别适合于机器配置条件非常差(例如
      * 只有1G的内存)的初学者       *
      */
    val conf = new SparkConf() //创建SparkConf对象
    conf.setAppName("OnlineTheTop3ItemForEachCategory2DB") //设置应用程序的名称,在程序运行的监控界面可以看到名称
//    conf.setMaster("spark://Master:7077") //此时,程序在Spark集群
    conf.setMaster("local[6]")
    //设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口
    val ssc = new StreamingContext(conf, Seconds(5))
    ssc.checkpoint("/root/Documents/SparkApps/checkpoint")
    val userClickLogsDStream = ssc.socketTextStream("Master", 9999)
    val formattedUserClickLogsDStream = userClickLogsDStream.map(clickLog =>
        (clickLog.split(" ")(2) + "_" + clickLog.split(" ")(1), 1))

//    val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow((v1:Int, v2: Int) => v1 + v2,
//      (v1:Int, v2: Int) => v1 - v2, Seconds(60), Seconds(20))
    val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow(_+_,
      _-_, Seconds(60), Seconds(20))

    categoryUserClickLogsDStream.foreachRDD { rdd => {
      if (rdd.isEmpty()) {
        println("No data inputted!!!")
      } else {
        val categoryItemRow = rdd.map(reducedItem => {
          val category = reducedItem._1.split("_")(0)
          val item = reducedItem._1.split("_")(1)
          val click_count = reducedItem._2
          Row(category, item, click_count)
        })

        val structType = StructType(Array(
          StructField("category", StringType, true),
          StructField("item", StringType, true),
          StructField("click_count", IntegerType, true)
        ))

        val hiveContext = new HiveContext(rdd.context)
        val categoryItemDF = hiveContext.createDataFrame(categoryItemRow, structType)

        categoryItemDF.registerTempTable("categoryItemTable")

        val reseltDataFram = hiveContext.sql("SELECT category,item,click_count FROM (SELECT category,item,click_count,row_number()" +
          " OVER (PARTITION BY category ORDER BY click_count DESC) rank FROM categoryItemTable) subquery " +
          " WHERE rank <= 3")
        reseltDataFram.show()

        val resultRowRDD = reseltDataFram.rdd
        resultRowRDD.foreachPartition { partitionOfRecords => {
          if (partitionOfRecords.isEmpty){
            println("This RDD is not null but partition is null")
          } else {
            // ConnectionPool is a static, lazily initialized pool of connections
            val connection = ConnectionPool.getConnection()
            partitionOfRecords.foreach(record => {
              val sql = "insert into categorytop3(category,item,client_count) values('" + record.getAs("category") + "','" +
                record.getAs("item") + "'," + record.getAs("click_count") + ")"
              val stmt = connection.createStatement();
              stmt.executeUpdate(sql);
            })
            ConnectionPool.returnConnection(connection) // return to the pool for future reuse
          }
        }
        }
      }
    }
    }
    /**
      * 在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler
      * 的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
      *   1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job
      *   2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到
      *   数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker
      *   内部会通过ReceivedBlockTracker来管理接受到的元数据信息
      * 每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD
      * 的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个
      * 单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?
      *   1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
      *   2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持;
      *
      */
    ssc.start()
    ssc.awaitTermination()
  }
}
二、基于案例源码解析

main方法中将 SparkConf 作为参数传入 StreamingContext
StreamingContext构造函数中,调用createNewSparkContext

该方法创建一个SparkContext对象,说明SparkStreaming是Spark Core上的一个应用。

持久化操作checkpoint
ssc.checkpoint("/root/Documents/SparkApps/checkpoint")

创建SocketTextStream,以获取输入数据源


创建socketStream


SocketInputDStream继承了ReceiverInputDStream类,它有getReceiver(),getStart(),getStop()方法




SockdetReceiver类中有 onStart,onStop,receiver 方法


创建SocketInputStream的receive方法来获取数据源


数据输出 :categoryUserClickLogsDStream.foreachRDD


Job作业生成


DStream中generatedRDDs,通过getOrCompute方法取得给定的时间的RDD数据



ssc.start(),  调用jobScheduler的start方法,其中也调用了receiverTracker.start() , jobGenerator.start(),此处略


最后经上海-丁立清同学同意,转载以下流程图,真的很棒!




  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值