Windows下安装Hive与问题

下载与安装

hive必须依赖hadoop,所以先安装hadoop,可以参考hadoop安装

注意hive一般2.x.x就对应hadoop的2.y.y版本,3.x.x就需要hadoop的3.y.y版本。

hive下载

hive download

hive下载 Hive下载

hive wiki

高版本的hive中没有在windows下的运行的脚本,可以在hive windows运行脚本下载,覆盖对应的bin目录就可以了。

解压:

hive_home

HIVE_HOME目录

hive配置文件目录

hive配置文件目录

Hive依赖Hadoop,记得配置HADOOP_HOME,因为启动基本中会使用到,也可以直接配置到hive-env.sh文件中,但是windows下不会使用这个配置文件,具体的可以看一下运行时候脚本。

特别注意,如果遇到类似下面的错误:

java.lang.NoSuchMethodError: com.lmax.disruptor.dsl.Disruptor.<init>(Lcom/lmax/disruptor/EventFactory;ILjava/util/concurrent/ThreadFactory;Lcom/lmax/disruptor/dsl/ProducerType;Lcom/lmax/disruptor/WaitStrategy;)V

把%HADOOP_HOME%\share\hadoop\yarn\lib目录下的disruptor包的版本替换为hive的lib目录下的disruptor的jar包。

在hive3.1.1和hadoop3.0.2就会出现上面的问题。

如果其他问题,检查包冲突,对比源码,添加相应版本jar包,将hadoop依赖的jar包和hive依赖的jar替换为可共用的版本。

配置

hive-site.xml

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
  <property>
    <name>hive.metastore.warehouse.dir</name>
    <value>/user/hive/warehouse</value>
    <description>hive的数据存储目录,指定的位置在hdfs上的目录</description>
  </property>
  <property>
    <name>hive.exec.scratchdir</name>
    <value>/tmp/hive</value>
    <description>hive的临时数据目录,指定的位置在hdfs上的目录</description>
  </property>
  <property>
    <name>hive.exec.local.scratchdir</name>
    <value>G:/datacenter/hivedata/iotmp</value>
    <description></description>
  </property>
  <property>
    <name>hive.downloaded.resources.dir</name>
    <value>G:/datacenter/hivedata/iotmp</value>
    <description></description>
  </property>
  <property>
    <name>hive.querylog.location</name>
    <value>G:/datacenter/hivedata/iotmp</value>
    <description></description>
  </property>
  <property>
    <name>hive.server2.logging.operation.log.location</name>
    <value>G:/datacenter/hivedata/logs</value>
    <description></description>
  </property>
  <!--mysql-->
  <property>
    <name>javax.jdo.option.ConnectionURL</name>
    <value>jdbc:mysql://localhost:3306/hive?characterEncoding=UTF-8</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionDriverName</name>
    <value>com.mysql.jdbc.Driver</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionUserName</name>
    <value>hive</value>
  </property>
  <property>
    <name>javax.jdo.option.ConnectionPassword</name>
    <value>123456</value>
  </property>
  <property>
    <name>datanucleus.autoCreateSchema</name>
    <value>true</value>
  </property>
  <property>
    <name>datanucleus.autoCreateTables</name>
    <value>true</value>
  </property>
  <property>
    <name>datanucleus.autoCreateColumns</name>
    <value>true</value>
  </property>
  <property>
    <name>hive.metastore.schema.verification</name>
    <value>false</value>
    <description/>
  </property>
</configuration>

hive.metastore.warehouse.dir:hive数据存储目录 hive.exec.scratchdir:hive临时数据目录

元数据仓库,默认使用Derby,可以配置其他数据库,如MySQL javax.jdo.option.ConnectionURL:连接URL javax.jdo.option.ConnectionDriverName:驱动名称 javax.jdo.option.ConnectionUserName:数据库用户名 javax.jdo.option.ConnectionPassword:数据库密码

创建hadoop目录

确保hive配置中的目录在hdfs中已经创建,并且有相应权限

hadoop fs -mkdir /user/
hadoop fs -mkdir /user/hive
hadoop fs -mkdir /user/hive/warehouse
hadoop fs -mkdir /tmp
hadoop fs -mkdir /tmp/hive
#让所用人都又权限修改/tmp目录
hadoop fs -chmod -R 777 /tmp

初始化MySQL

初始化hive存放元数据数据库的表,记得先创建数据库和给对应的用户授权。

hive --service schematool -initSchema -dbType mysql

Hive元数据MySQL表

Hive元数据MySQL表

交互与基本命令

#创建数据库
create shcema dbName
#创建表
create table tableName
# 查看某个数据库
show databases
# 进入某个数据库
use dbName
#查看所有表
show tables
#查看表结构
desc tableName
#显示表名的分区
show partitions tableName

# 创建一个表,结构与另一个表一样
create table tableNameOne like tableNameTwo
# 创建外部表
create external table tableName
# 分区表
create external table tableName (l int) partitoned by (d string)
# 内外部表转化
alter table tableName set TBLPROPROTIES ('EXTERNAL'='TRUE')
alter table tableName set TBLPROPROTIES ('EXTERNAL'='FALSE')

#重命名表
alter table tableName rename to newTableName
# 增加字段
alter table tableName add columns (newCol int comment ‘新增’)
# 修改字段
alter table tableName change colName newColName newType
# 删除字段
alter table tableName replace columns (col1 int,col2 string,col3 string)
# 删除表
drop table tableName
# 删除分区
alter table tableName drop if exists partitions (d='2019-01-01')

注意:删除分区的时候,如果是外部表,则还需要删除文件:

hadoop fs -rm -r -f path

注意创建数据库是create schema,而不是create db

转载于:https://my.oschina.net/u/2474629/blog/3069332

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值