思维导图如何转换成图片

  随着思维导图的普及,越来越多的人开始使用思维导图来办公,人们也开始对思维导图软件的功能有所要求,为了满足用户的需求,软件也是一点点的在更新,那么思维导图怎么转换成图片呢?

  1、首先打开迅捷思维导图软件,点击【新建】直接进去制作界面;
 
  2、右击现有节点或者按住Tab键为思维导图添加新的节点;
 
  3、在软件的左边可以为思维导图添加电脑本地图片、超链接、多媒体等选项;
 
  4、点击【插入关连线】可以为两个有连系的节点插入关连线;
 
  5、点击【风格】可以改变思维导图的整体风格和背景颜色;
 
  6、思维导图制作完成后,点击【文件-导出】选择PNG就可以把思维导图转换成图片;
 
  好了,以上就是思维导图转换成图片的方法,大家学会了吗?

  迅捷思维导图:http://www.siweidaotu.com/
 

转载于:https://my.oschina.net/u/3919488/blog/1931459

分布式架构 漫谈分布式架构 初识分布式架构与意义 如何把应用从单机扩展到分布式 大型分布式架构演进过程 分布式架构设计 主流架构模型-SOA架构和微服务架构 领域驱动设计及业务驱动规划 分布式架构的基本理论CAP、BASE以及其应用 什么是分布式架构下的高可用设计 构架高性能的分布式架构 构建分布式架构最重要因素 CDN静态文件访问 分布式存储 分布式搜索引擎 应用发布与监控 应用容灾及机房规划 系统动态扩容 分布式架构策略-分而治之 从简到难,从网络通信探究分布式通信原理 基于消息方式的系统间通信 理解通信协议传输过程中的序列化和反序列化机制 基于框架的RPC通信技术 WebService/ApacheCXF RMI/Spring RMI Hession 传统RPC技术在大型分布式架构下面临的问题 分布式架构下的RPC解决方案 Zookeeper 分布式系统的基石 从0开始搭建3个节点额度zookeeper集群 深入分析Zookeeper在disconf配置中心的应用 基于Zookeeper Watcher 核心机制深入源码分析 Zookeeper集群升级、迁移 基于Zookeeper实现分布式服务器动态上下线感知 深入分析Zookeeper Zab协议及选举机制源码解读 Dubbo 使用Dubbo对单一应用服务化改造 Dubbo管理中心及及监控平台安装部署 Dubbo分布式服务模块划分(领域驱动) 基于Dubbo的分布式系统架构实战 Dubbo负载均衡策略分析 Dubbo服务调试之服务只订阅及服务只注册配置 Dubbo服务接口的设计原则(实战经验) Dubbo设计原理及源码分析 基于Dubbo构建大型分布式电商平台实战雏形 Dubbo容错机制及扩展性分析 分布式解决方案 分布式全局ID生成方案 session跨域共享及企业级单点登录解决方案实战 分布式事务解决方案实战 高并发下的服务降级、限流实战 基于分布式架构下分布式锁的解决方案实战 分布式架构实现分布式定时调度 分布式架构-中间件 分布式消息通信 消息中间件在分布式架构中的应用 ActiveMQ ActiveMQ高可用集群企业及部署方案 ActiveMQ P2P及PUB/SUB模式详解 ActiveMQ消息确认及重发策略 ActiveMQ基于Spring完成分布式消息队列实战 Kafka Kafka基于Zookeeper搭建高可用集群实战 kafka消息处理过程剖析 Java客户端实现Kafka生产者与消费者实例 kafka的副本机制及选举原理剖析 基于kafka实现应用日志实时上报统计分析 RabbitMQ 初步认识RabbitMQ及高可用集群部署 详解RabbitMQ消息分发机制及主题消息分发 RabbitMQ消息路由机制分析 RabbitMQ消息确认机制 Redis redis数据结构分析 Redis主从复制原理及无磁盘复制分析 Redis管道模式详解 Redis缓存与数据库一致性问题解决方案 基于redis实现分布式实战 图解Redis中的AOF和RDB持久化策略的原理 redis读写分离架构实践 redis哨兵架构及数据丢失问题分析 redis Cluster数据分布算法之Hash slot redis使用常见问题及性能优化思路 redis高可用及高并发实战 缓存击穿、缓存雪崩预防策略 Redis批量查询优化 Redis高性能集群之Twemproxy of Redis 数据存储 MongoDB NOSQL简介及MongoDB支持的数据类型分析 MongoDB可视化客户端及JavaApi实践 手写基于MongoDB的ORM框架 MongoDB企业级集解决方案 MongoDB聚合、索引及基本执行命令 MongoDB数据分片、转存及恢复策略 MyCat MySQL主从复制及读写分离实战 MySQL+keepalived实现双主高可用方案实践 MySQL高性能解决方案之分库分表 数据库中间件初始Mycat 基于Mycat实习MySQL数据库读写分离 基于Mycat实战之数据库切分策略剖析 Mycat全局表、Er表、分片预警分析 Nginx 基于OpenResty部署应用层Nginx以及Nginx+lua实战 Nginx反向代理服务器及负载均衡服务器配置实战 利用keepalived+Nginx实战Nginx高可用方案 基于Nginx实现访问控制、连接限制 Nginx动静分离实战 Nginx Location ReWrite 等语法配置及原理分析 Nginx提供https服务 基于Nginx+lua完成访问流量实时上报Kafka的实战 Netty 高性能NIO框架 IO 的基本概念、NIO、AIO、BIO深入分析 NIO的核心设计思想 Netty产生的背景及应用场景分析 基于Netty实现的高性能IM聊天 基于Netty实现Dubbo多协议通信支持 Netty无锁化串行设计及高并发处理机制 手写实现多协议RPC框架
7个回归分析方法 什么是回归分析? 回归分析是一种预测性的建模技术,它研究的是因变量(目标)和自变量(预测器)之间的关系。 这种技术通常用于 预测分析、 时间序列模型 以及发现变量之间的因果关系。 例如,司机的鲁莽驾驶与道路交通事故数量之间的关系,最好的研究方法就是回归。 回归分析是建模和分析数据的重要工具。 在这里,我们使用曲线/线来拟合这些数据点, 在这种方式下,从曲线或线到数据点的距离差异最小。 我会在接下来的部分详细解释这一点。 我们为什么使用回归分析? 如上所述,回归分析估计了两个或多个变量之间的关系。 下面,让我们举一个简单的例子来理解它: 比如说,在当前的经济条件下,你要估计一家公司的销售额增长情况。 现在,你有公司最新的数据,这些数据显示出销售额增长大约是经济增长的2.5倍。 那么使用回归分析,我们就可以根据当前和过去的信息来预测未来公司的销售情况。 使用回归分析的好处良多。 具体如下: • 它表明自变量和因变量之间的显著关系 它表明多个自变量对一个因变量的影响强度 回归分析也允许我们去比较那些衡量不同尺度的变量之间的相互影响,如价格变动与促销活动数量之间联系。 这些有利于帮助市场研究人员,数据分析人员以及数据科学家排除并估计出一组最佳的变量,用来构建预测模型。 我们有多少种回归技术? 有各种各样的回归技术用于预测。 这些技术主要有三个度量 (自变量的个数, 因变量的类型 回归线的形状)。 对于那些有创意的人,如果你觉得有必要使用上面这些参数的一个组合,你甚至可以创造出一个没有被使用过的回归模型。 但在你开始之前,先了解如下最常用的回归方法: 1. 线性回归(Linear Regression) 线性回归通常是人们在学习预测模型时首选的技术之一。 在这种技术中, 因变量是连续的, 自变量可以是连续的也可以是离散的, 回归线的性质是线性的。 线性回归使用最佳的拟合直线(也就是回归线) 在因变量(Y)和一个或多个自变量(X)之间建立一种关系。 用一个方程式来表示它,即 Y=a+b*X + e, 其中a表示截距, b表示直线的斜率, e是误差项。 这个方程可以根据给定的预测变量(s)来预测目标变量的值。 现在的问题是:我们如何得到一个最佳的拟合线呢? 这个问题可以使用最小二乘法轻松地完成。 一元线性回归和多元线性回归的区别在于, 多元线性回归有(>1)个自变量, 而一元线性回归通常只有1个自变量。 最小二乘法也是用于拟合回归线最常用的方法。 对于观测数据,它通过最小化每个数据点到线的垂直偏差平方和来计算最佳拟合线。 因为在相加时,偏差先平方,所以正值和负值没有抵消。 我们可以使用R-square指标来评估模型性能。 要点: • 自变量与因变量之间必须有线性关系 • 多元回归存在多重共线性,自相关性和异方差性 线性回归对异常值非常敏感。它会严重影响回归线,最终影响预测值 多重共线性会增加系数估计值的方差,使得在模型轻微变化下,估计非常敏感。 结果就是系数估计值不稳定, 在多个自变量的情况下,我们可以使用向前选择法,向后剔除法和逐步筛选法来选择最重要的自变量。 2. 逻辑回归(Logistic Regression) 逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。 当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,我们就应该使用逻辑回归。 这里,Y的值从0到1,它可以用下方程表示。 odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence ln(odds) = ln(p/(1-p)) logit(p) = ln(p/(1-p)) = b0+b1X1+b2X2+b3X3....+bkXk 概要 上述式子中,p表述具有某个特征的概率。 你应该会问这样一个问题:我们为什么要在公式中使用对数log呢? 因为在这里我们使用的是的二项分布(因变量),我们需要选择一个对于这个分布最佳的连结函数。 它就是Logit函数。 在上述方程中,通过观测样本的极大似然估计值来选择参数, 而不是最小化平方和误差(如在普通回归使用的)。 要点: • 它广泛的用于分类问题。 逻辑回归不要求自变量和因变量是线性关系。 它可以处理各种类型的关系,因为它对预测的相对风险指数OR使用了一个非线性的log转换。 逻辑回归是用于分类的~这个得记住 为了避免过拟合和欠拟合,我们应该包括所有重要的变量。 有一个很好的方法来确保这种情况, 就是使用逐步筛选方法来估计逻辑回归。 它需要大的样本量,因为在样本数量较少的情况下,极大似然估计的效果比普通的最小二乘法差。 自变量不应该相互关联的,即不具有多重共线性。 然而,在分析和建模中,我们可以选择包含分类变量相互作用的影响。 • 如果因变量的值是定序变量,则称它为序逻辑回归 • 如果因变量是多类的话,则称它为多元逻辑回归 3. 多项式回归(Polynomial Regression) 对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。 如下方程所示:y=a+b*x^2 在这种回归技术中,最佳拟合线不是直线。 而是一个用于拟合数据点的曲线。 重点: 虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。 你需要经常画出关系图来查看拟合情况,并且专注于保证拟合合理,既没有过拟合又没有欠拟合。 下面是一个图例,可以帮助理解: 明显地向两端寻找曲线点,看看这些形状和趋势是否有意义。 更高次的多项式最后可能产生怪异的推断结果。 4. 逐步回归(Stepwise Regression) 在处理多个自变量时,我们可以使用这种形式的回归。 在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。 这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。 逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。 下面列出了一些最常用的逐步回归方法: • 标准逐步回归法做两件事情。即增加和删除每个步骤所需的预测。 • 向前选择法从模型中最显著的预测开始,然后为每一步添加变量。 • 向后剔除法与模型的所有预测同时开始,然后在每一步消除最小显着性的变量。 这种建模技术的目的是使用最少的预测变量数来最大化预测能力。 这也是处理高维数据集的方法之一。 5. 岭回归(Ridge Regression) 岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。 在多重共线性情况下,尽管最小二乘法(OLS)对每个变量很公平,但它们的差异很大,使得观测值偏移并远离真实值。 岭回归通过给回归估计上增加一个偏差度,来降低标准误差。 上面,我们看到了线性回归方程。还记得吗? 它可以表示为:y=a+ b*x 这个方程也有一个误差项。完整的方程是: y=a+b*x+e (error term) , [error term is the value needed to correct for a prediction error between the observed and predicted value] => y=a+y= a+ b1x1+ b2x2+....+e, for multiple independent variables. 在一个线性方程中,预测误差可以分解为2个子分量。 一个是偏差, 一个是方差。 预测错误可能会由这两个分量或者这两个中的任何一个造成。 在这里,我们将讨论由方差所造成的有关误差。 岭回归通过收缩参数λ(lambda)解决多重共线性问题。 看下面的公式: 在这个公式中,有两个组成部分。 第一个是最小二乘项, 另一个是β2(β-平方)的λ倍,其中β是相关系数。 为了收缩参数把它添加到最小二乘项中以得到一个非常低的方差。 要点: 除常数项以外,这种回归的假设与最小二乘回归类似; 它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能,这是一个正则化方法,并且使用的是L2正则化。 6. 套索回归(Lasso Regression) 它类似于岭回归。 Lasso (Least Absolute Shrinkage and Selection Operator)也会惩罚回归系数的绝对值大小。 此外,它能够减少变化程度并提高线性回归模型的精度。 看看下面的公式: Lasso 回归与Ridge回归有一点不同,它使用的惩罚函数是绝对值,而不是平方。 这导致惩罚(或等于约束估计的绝对值之和)值使一些参数估计结果等于零。 使用惩罚值越大,进一步估计会使得缩小值趋近于零。 这将导致我们要从给定的n个变量中选择变量。 要点: • 除常数项以外,这种回归的假设与最小二乘回归类似 • 它收缩系数接近零(等于零),确实有助于特征选择 这是一个正则化方法,使用的是L1正则化 7. 回归(ElasticNet) ElasticNet是Lasso和Ridge回归技术的混合体。 它使用L1来训练并且L2优先作为正则化矩阵。 当有多个相关的特征时,ElasticNet是很有用的。 Lasso 会随机挑选他们其中的一个,而ElasticNet则会选择两个。 Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。 要点: 它可以承受双重收缩 • 选择变量的数目没有限制 • 在高度相关变量的情况下,它会产生群体效应 除了这7个最常用的回归技术,你也可以看看其他模型,如Bayesian、Ecological和Robust回归。 如何正确选择回归模型? 当你只知道一个或两个技术时,生活往往很简单。 我的老师曾告诉我,如果结果是连续的,就使用线性回归。 如果是二元的,就使用逻辑回归! 然而,在我们的处理中,可选择的越多,选择正确的一个就越难。 类似的情况下也发生在回归模型中。 在多类回归模型中,基于自变量和因变量的类型,数据的维数以及数据的其它基本特征的情况下,选择最合适的技术非常重要。 以下是你要选择正确的回归模型的关键因素: 1. 数据探索是构建预测模型的必然组成部分 在选择合适的模型时,比如识别变量的关系和影响时,它应该首选的一步。 2. 比较适合于不同模型的优点,我们可以分析不同的指标参数 如统计意义的参数,R-square,Adjusted R-square,AIC,BIC以及误差项,另一个是Mallows' Cp准则。 这个主要是通过将模型与所有可能的子模型进行对比(或谨慎选择他们),检查在你的模型中可能出现的偏差。 3. 交叉验证是评估预测模型最好额方法 在这里,将你的数据集分成两份(一份做训练和一份做验证)。 使用观测值和预测值之间的一个简单均方差来衡量你的预
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值