Codeforces 494B

#include<iostream>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cstdlib>
#include<vector>
using namespace std;

const int maxn = 100005;
const int mod = (int)1e9+7;
char s[maxn], t[maxn];
long long dp[maxn][3];
int nxt[maxn];
bool f[maxn];
int main(){
	cin >> s >> t;
	int slen = strlen(s), tlen = strlen(t);
	for(int i = 0, j = -1; i <= tlen; ++i, ++j){
		nxt[i] = j;
		while(~j && t[i] != t[j]) j = nxt[j];
	}
	for(int i = 0, j = 0; i <= slen; ++i, ++j){
		if(j == tlen) f[i-1] = true;
		while(~j && s[i] != t[j]) j = nxt[j];
	}
	for(int i = 1; i <= slen; ++i){
		if(f[i - 1]){
			dp[i][0] = dp[i - tlen][2] + i - tlen + 1;
			dp[i][1] = dp[i][0] + dp[i-1][1];
		}
		else{
			dp[i][0] = dp[i - 1][0];
			dp[i][1] = dp[i][0] + dp[i - 1][1];
		}
		dp[i][0] %= mod;
		dp[i][1] %= mod;
		dp[i][2] = (dp[i-1][2] + dp[i][1]) % mod;
	}
	printf("%lld\n",dp[slen][1]);
	return 0;
}

这道题是参考了http://dtyfc.com/acm/1105 的解法做的

这道题首先要弄清楚题意,结合题中所给的 ddd , d这组样例来说,如果用d1, d2, d3分别表示位置在1,2,3处的d,符合题意的12组分别是

k = 1时:

{d1} {d2} {d3} {d1d2} {d2d3}{d1d2d3}

k = 2时:

{d1,d2} {d1,d3} {d2,d3} {d1d2,d3} {d1,d2d3} 

k = 3时:

{d1, d2, d3}

所以首先想到的用kmp找到所有s和t匹配的位置后枚举k,但是这样的复杂度太高了,所以直接看了参考的解法

f[i]= 1 ➡️ s[i-|t|+1]...s[i]与t相同

     = 0 ➡️ else

 dp[i][0] 表示包括第i个字符在内,s[0...i]中找到符合题目要求的下标数; dp[i][1]表示s[0...i]中找到的符合题目要求的下标数, dp[i][2]是dp[0][1] dp[1][1] ... dp[i][1]的和

  那么递推关系如下:

if (f[i] == 1){

    dp[i][0] = dp[i-1][2] + (i - |t| + 1);

    dp[i][1] = dp[i][0] + dp[i-1][1];

}

else{

    dp[i][0] = dp[i-1][0];

    dp[i][1] = dp[i][0] + dp[i-1][1];

}

dp[i][2] = dp[i-1][2]  + dp[i][1];



   


转载于:https://my.oschina.net/u/1421373/blog/379502

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值