#include<iostream>
#include<string>
#include<cstring>
#include<string.h>
#include<algorithm>
#include<cstdlib>
#include<vector>
using namespace std;
const int maxn = 100005;
const int mod = (int)1e9+7;
char s[maxn], t[maxn];
long long dp[maxn][3];
int nxt[maxn];
bool f[maxn];
int main(){
cin >> s >> t;
int slen = strlen(s), tlen = strlen(t);
for(int i = 0, j = -1; i <= tlen; ++i, ++j){
nxt[i] = j;
while(~j && t[i] != t[j]) j = nxt[j];
}
for(int i = 0, j = 0; i <= slen; ++i, ++j){
if(j == tlen) f[i-1] = true;
while(~j && s[i] != t[j]) j = nxt[j];
}
for(int i = 1; i <= slen; ++i){
if(f[i - 1]){
dp[i][0] = dp[i - tlen][2] + i - tlen + 1;
dp[i][1] = dp[i][0] + dp[i-1][1];
}
else{
dp[i][0] = dp[i - 1][0];
dp[i][1] = dp[i][0] + dp[i - 1][1];
}
dp[i][0] %= mod;
dp[i][1] %= mod;
dp[i][2] = (dp[i-1][2] + dp[i][1]) % mod;
}
printf("%lld\n",dp[slen][1]);
return 0;
}
这道题是参考了http://dtyfc.com/acm/1105 的解法做的
这道题首先要弄清楚题意,结合题中所给的 ddd , d这组样例来说,如果用d1, d2, d3分别表示位置在1,2,3处的d,符合题意的12组分别是
k = 1时:
{d1} {d2} {d3} {d1d2} {d2d3}{d1d2d3}
k = 2时:
{d1,d2} {d1,d3} {d2,d3} {d1d2,d3} {d1,d2d3}
k = 3时:
{d1, d2, d3}
所以首先想到的用kmp找到所有s和t匹配的位置后枚举k,但是这样的复杂度太高了,所以直接看了参考的解法
f[i]= 1 ➡️ s[i-|t|+1]...s[i]与t相同
= 0 ➡️ else
dp[i][0] 表示包括第i个字符在内,s[0...i]中找到符合题目要求的下标数; dp[i][1]表示s[0...i]中找到的符合题目要求的下标数, dp[i][2]是dp[0][1] dp[1][1] ... dp[i][1]的和
那么递推关系如下:
if (f[i] == 1){
dp[i][0] = dp[i-1][2] + (i - |t| + 1);
dp[i][1] = dp[i][0] + dp[i-1][1];
}
else{
dp[i][0] = dp[i-1][0];
dp[i][1] = dp[i][0] + dp[i-1][1];
}
dp[i][2] = dp[i-1][2] + dp[i][1];