Leetcode 53, Maximum Subarray

Leetcode 53, Maximum Subarray, 难度 easy

仍然是用的分治,把一个数组拆成两半,这样就有了三种情况,有可能在左边,也有可能在右边,有可能是左右两边加上中间,返回的时候有三种情况加以判断,从中间开始往两边进行遍历。
以下是代码:

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
       return maximum(nums, 0, nums.size() - 1);
    }

    int maximum(vector<int>& nums, int begin, int end) {
        if(begin == end) return nums[begin];
        if(begin < end) {
            int mid = begin + (end - begin) / 2;
            int left = maximum(nums, begin, mid);
            int right = maximum(nums, mid + 1, end);
            int i, sum, lm = 0, rm = 0;
            for (i = mid - 1, sum = 0; i >= begin; i--) {
                sum += nums[i];
                lm = max(sum, lm);
            }
            for (i = mid + 1, sum = 0; i <= end; i++) {
                sum += nums[i];
                rm = max(sum, rm);
            }
            return max(lm + nums[mid] + rm, max(left, right));
        }
    }
};
Leetcode 高频考题整理确实是很有帮助的,以下是一些常见的 Leetcode 高频考题整理: 1. 数组和字符串问题: - 两数之和 (Two Sum) - 三数之和 (Three Sum) - 最长回文子串 (Longest Palindromic Substring) - 盛最多水的容器 (Container With Most Water) - 下一个排列 (Next Permutation) 2. 链表问题: - 反转链表 (Reverse Linked List) - 删除链表中的倒数第N个节点 (Remove Nth Node From End of List) - 合并两个有序链表 (Merge Two Sorted Lists) - 链表中环的检测 (Linked List Cycle) - 环形链表的起始点 (Linked List Cycle II) 3. 树和图问题: - 二叉树的遍历 (Binary Tree Traversal) - 二叉树的最大深度 (Maximum Depth of Binary Tree) - 二叉树的最小深度 (Minimum Depth of Binary Tree) - 图的深度优先搜索 (Depth First Search) - 图的广度优先搜索 (Breadth First Search) 4. 动态规划问题: - 爬楼梯 (Climbing Stairs) - 最大子序和 (Maximum Subarray) - 打家劫舍 (House Robber) - 不同路径 (Unique Paths) - 最长递增子序列 (Longest Increasing Subsequence) 5. 排序和搜索问题: - 快速排序 (Quick Sort) - 归并排序 (Merge Sort) - 二分查找 (Binary Search) - 搜索旋转排序数组 (Search in Rotated Sorted Array) - 寻找峰值 (Find Peak Element) 这只是一些常见的 Leetcode 高频考题整理,还有很多其他题目也值得关注。通过刷题和整理高频题目,可以提高对算法和数据结构的理解和应用能力。希望对你有所帮助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值