解题思路
这是一道典型的二分查找题,通过找规律可以发现,从左下角开始的话,不用向下或是向左查找,相当于找一颗二叉查找树,具体算法如下:
- 首先定义当前查找位置:index_x = Matrix.size()-1和index_y = 0
- 通过循环查找。边界条件为:index_x < 0 || index_y > Martrix[0].size(),具体的含义就是,一直向上或者右方向去找,一直找到target或者出某一方向的边界为止
- 如果找到target,直接退出循环,并返回true,否则,如果当前元素大于target,则需要向上查找,如果当前元素小于target,则需要向右去查找
- 这里要注意判断一下特殊元素[]和[[]],可以利用 || 的短路特性防止编译出错。
另外要说的就是,最好不要用递归,会超时。。。
递归版本代码(超时了):
class Solution {
public:
//进行二分搜索
bool helper(vector<vector<int>>& matrix,int target,int c_x,int c_y){
if(c_x < 0 || c_y > matrix[0].size()-1) return false;
if(target == matrix[c_x][c_y]) return true;
else if(target > matrix[c_x][c_y]){
return helper(matrix,target,c_x,c_y++);
}else{
return helper(matrix,target,c_x--,c_y);
}
}
bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
bool res = false;
if(matrix.size() <= 0) return res;
int index_x = matrix.size()-1,index_y = 0;
res = helper(matrix,target,index_x,index_y);
return res;
}
};
非递归代码:
class Solution {
public:
//进行二分搜索
bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
bool res = false;
if(matrix.size() <= 0 || matrix[0].size() <= 0) return res;
int index_x = matrix.size()-1,index_y = 0;
while(index_x >= 0 && index_y <= matrix[0].size()-1){
if(target == matrix[index_x][index_y]){
res = true;
break;
}else if(target > matrix[index_x][index_y]){
index_y ++;
}else{
index_x --;
}
}
return res;
}
};