https://leetcode-cn.com/problems/house-robber/
状态数组 dp[i]意思是从第0个房屋到第i个房屋能偷到的最高金额。
考虑偷盗的最后一步,即偷第i个房子的时候,如果偷了i那么就不偷i-1,
那么此时偷到的金额是 dp[i] = dp[i - 2] + nums[i]
如果没有偷i,那么dp[i] = dp[i - 1]
所以状态转移方程为 dp[i] = max(dp[i - 2] + nums[i], dp[i - 1])
初始值为 dp[0] = nums[0], dp[1] = max(nums[0], nums[1])
需要注意的一点是初始值赋值的时候要考虑nums的长度可能为1
class Solution {
public:
int rob(vector<int>& nums) {
// 状态数组 dp[i]表示前k间房屋能偷到的最多的钱数
// 状态转移方程 dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
// 起始状态 dp[0] = nums[0], dp[1] = max(nums[0], nums[1])
int len = nums.size();
if(len == 1) return nums[0]; // 这里不能少,不然下边赋初值的时候会有问题
vector<int> dp(len);
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for(int i = 2; i < len; ++i){
dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return dp[len - 1];
}
};
因为转移方程中dp[i]只与其前边两项有关,我们最终要的就是dp[i],因此可以只保留前两项,相当于用两个变量实现滚动数组的效果。
class Solution {
public:
int rob(vector<int>& nums) {
// 状态数组 dp[i]表示前k间房屋能偷到的最多的钱数
// 状态转移方程 dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
// 起始状态 dp[0] = nums[0], dp[1] = max(nums[0], nums[1])
int len = nums.size();
if(len == 0) return 0;
if(len == 1) return nums[0]; // 这里不能少,不然下边赋初值的时候会有问题
// 偷盗总金额只与当前房屋和前两个房屋对应的总金额有关
int first = nums[0], second = max(nums[0], nums[1]);
for(int i = 2; i < len; ++i){
int temp = second;
second = max(first + nums[i], second);
first = temp;
// dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);
}
return second;
}
};