目录
一、完全图、偶图与补图
二、顶点的度与图的度序列
一、完全图
(1)完全图首先是一个简单图,即没有环也没有重边的图。且任意一个顶点都与其它每个顶点有且只有一条边相连接
(2)n个顶点的完全图用Kn表示,称为n阶完全图。
小知识:所以完全图的边数应该是C(2,n)=1/2*n*(n-1),即从n个点中任意取出两个点来连线
偶图(双图或二部图)
(1)偶图特征:顶点集可以分成不相交的两部分;任意一条边的端点分别属于这两部分之一。
偶图定义:具有二分类(X,Y)的偶图(二部图)是指这样一个图,它的点集可以分解为两个非空子集X和Y,使得每条边的一个端点在X中,另一个端点在Y中。
小知识:由定义可知,偶图不能有环,不能有三角形,但可以有重边。
(2)完全偶图
完全偶图是指具有二分类(X,Y)的简单偶图,其中X的每个顶点与Y的每个顶点相连,若|X|=n1,|Y|
=n2,则这样的偶图记为。
如上图为,由定义可知完全偶图是简单图,不含有重边,且完全偶图并不是完全图,因为完全图要求任意一个顶点都与其它每个顶点有一条边相连,而在完全偶图中,同一点集中的两点是不可能邻接的。所以完全偶图一定不是完全图!
简单图的补图
对于一个n阶简单图G,基于跟其有相同顶点集的完全图,定义了简单图G的补图。
小知识:只有简单图才有补图;
简单图与其补图的顶点集合是相同的;
n阶简单图任意一对顶点邻接的充要条件是这对顶点在其补图中不邻接;
简单图边数与其补图的边数之和等于的边数;
自补图
如果图G与其补图同构,则称G为自补图。
定理1:若n阶图G是自补图,则有n=0,1(mod 4)
即n阶图的边数是4的倍数,或4的倍数加1
证明:
二、顶点的度与图的度序列
顶点的度
注意:k-正则图是所有度都为k的简单图,注意与k阶完全图的辨析,两者相同之处在于前提都是简单图。
图论第一定理(握手定理):图G=(V,E)中所有顶点的度数之和等于边数的两倍。
推论1:在任何图中,奇点个数为偶数。
推论2:正则图的阶数和度数不能同时为奇数。
例题:
图的度序列(注意与图序列的区别)
注意:一个图的度序列与序列中元素排列无关;
给定一个图,只对应唯一一个度序列;
同构的图具有相同的度序列
定理:
注意根据非负整数组画图的规则,序列中有多少个元素就画多少个点,先画偶数的,对于每个偶数点,只需要画度数的一半个环就行了,不用跟其它点相连,对于奇数,奇数点肯定有偶数个,比如有6个奇数点,可以两两配对配成3组,这样每个点就连到了一条边,剩余的度数就是偶数了,所以再画剩余度数的一半个圈就行了。
图序列
由定义可知,图序列是属于度序列的,给图的度序列加一个约束,限制该图为简单图,则图的度序列此时就是图序列。
图序列判定定理:
注意:判定图序列时,先判定和为偶数,然后把元素降序排列,去掉第一个元素,然后利用第一个元素加1的值作为下标,原序列中从第二个元素到这个下标的所有元素都减一,剩余元素保持不变,判断得到的新序列是不是图序列,如果不好判断,则迭代操作。
例题:
图的频序列及其性质
注意:频序列中每一个元素都是某一个度出现的次数,但是只有频序列时看不出来这是哪一个度出现的次数的。
定理:一个简单图G的n个点的度不能互不相同。
即等价于一个简单图的频序列中至少有一个元素大于等于2.
注意:情形1中有n个点对应n-1个度,所以肯定有两个一样的,情形2中有n-1个点对应n-2个度,所以也肯定至少有两个一样的,情形3中两个以上的孤立点,这些孤立点的度数肯定是相同的。
例题
证明:
对于V1中的点,每个点的度数都是k,
即每个点都对应了k条边,因为偶图不含有环或三角形,所以
k|V1|就是此k正则偶图的总边数 即k|V1|=m
同理k|V2|=m
故|V1|=|V2|
即对于偶图来说,如果是正则图,则两个点集中点的数目一定是相等的。
证明:
将人用图的顶点表示,图中两顶点邻接当且仅当人群中两人是朋友
由实际意义,
一个人本身不算做自己的朋友,即此图没有环
两人认识只需要一条边来表示,即此图没有重边
问题转化为在任意一个简单图G中必有一对度数相等的顶点
因为G是简单图,所以<=n-1
若G中没有孤立点,则1<=d(v)<=n-1,n个点,只有n-1种度数,
由鸽笼原理,必有至少两个点度数相同
若G中有一个孤立点,则对于其余的n-1个点,1<=d(v)<=n-2,
n-1个点,只有n-2种度数,由鸽笼原理,必有至少两个点度数相同
若G中有两个及以上的孤立点,则显然孤立点度数相同
得证
证明: