线性规划与网络流第22题 最长k可重线段问题 !!!!!!!!!!!!!!!!

//线性规划与网络流第22题
//最长k可重线段问题 
//20分/100分 程序
//感觉是数据有误T_T
#include<cstring>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<iostream>
#include<vector>
#include<queue>
#define pb push_back
using namespace std;
typedef long long LL;
const int N=2105,inf=0x3f3f3f3f;
const LL INF=(1LL)<<50;
struct MCMF
{
    struct Edge
    {
        int from,to,cap,flow;
        LL cost;
        Edge(){}
        Edge(int a,int b,int c,int d,LL e):from(a),to(b),cap(c),flow(d),cost(e){}
    };

    int n,m,s,t;
    vector<Edge> edges;
    vector<int> G[N];
    int inq[N],p[N],a[N];
    LL d[N];
    queue<int> Q;

    void init(int n)
    {
        this->n=n;
        for(int i=0;i<n;++i) G[i].clear();
        edges.clear();
    }

    void AddEdge(int from,int to,int cap,LL cost)
    {   //printf("~~~~~~~%d %d %d %lld\n",from,to,cap,cost);
        edges.push_back(Edge(from,to,cap,0,cost));
        edges.push_back(Edge(to,from,0,0,-cost));
        m=edges.size();
        G[from].push_back(m-2);
        G[to].push_back(m-1);
    }

    bool SPFA(int s,int t,int & flow,LL & cost)
    {
        for (int i=0;i<n;i++)d[i]=INF;
        memset(inq,0,sizeof(inq));
        d[s]=0;inq[s]=1;p[s]=0;a[s]=inf;
        Q.push(s);
        while(!Q.empty())
        {
            int u=Q.front();Q.pop();
            inq[u]=0;
            for(int i=0;i<G[u].size();++i)
            {
                Edge& e=edges[G[u][i]];
                if(e.cap>e.flow&&d[e.to]>d[u]+e.cost)
                {
                    d[e.to]=d[u]+e.cost;
                    p[e.to]=G[u][i];
                    a[e.to]=min(a[u],e.cap-e.flow);
                    if(!inq[e.to]) {Q.push(e.to);inq[e.to]=1;}
                }
            }
        }

        if(d[t]==INF) return false;
        flow+=a[t];//固定流量k,检查,若flow+a>=k,只增加k-flow个单位
        cost+=d[t]*a[t];
        int u=t;
        while(u!=s)
        {
            edges[p[u]].flow+=a[t];
            edges[p[u]^1].flow-=a[t];
            u=edges[p[u]].from;
        }
        return true;
    }

    LL Mincost(int s,int t)
    {
        int flow=0;
        LL cost=0;
        int id=0;

        while(SPFA(s,t,flow,cost));
        return cost;
    }
}it;


int n,k;
vector<int >A;
int a[605][4];

void doit()
{
    A.clear();
    for (int i=1;i<=n;i++)
        {scanf("%d%d%d%d",&a[i][0],&a[i][1],&a[i][2],&a[i][3]);
         if (a[i][0]>a[i][2])
            {
                swap(a[i][0],a[i][2]);
                swap(a[i][1],a[i][3]);
            }
         A.pb(a[i][0]);
         A.pb(a[i][2]-1);
        }

    int sz;//全局变量
    sort(A.begin(),A.end());
    sz=unique(A.begin(),A.end())-A.begin();
    int s=0,t=2*sz+1;
    it.init(t+1);

    it.AddEdge(0,1,inf,0);
    it.AddEdge(t-1,t,inf,0);
    LL ss;
    for (int i=1;i<=n;i++)
        {   int id1=lower_bound(A.begin(),A.begin()+sz,a[i][0])-A.begin();
            int id2=lower_bound(A.begin(),A.begin()+sz,a[i][2]-1)-A.begin();
            id1++; id2++;
            ss=LL(sqrt(double((LL(a[i][0]-a[i][2]))*(a[i][0]-a[i][2])+(LL(a[i][1]-a[i][3]))*(a[i][1]-a[i][3]))));
            if (id1>id2)  it.AddEdge(id2+sz,id1,1,-ss);
            if (id1==id2) it.AddEdge(id1,id2+sz,1,-ss);
            if (id1<id2)  it.AddEdge(id1+sz,id2,1,-ss);
        }
    for (int i=1;i<=sz;i++)
        it.AddEdge(i,i+sz,k,0);
    for (int i=1;i<sz;i++)
        if (A[i]-A[i-1]==1)it.AddEdge(i+sz,i+1,inf,0);else it.AddEdge(i+sz,i+1,k,0);
    cout<<-it.Mincost(s,t)<<endl;
}
int main()
{   int cas;
    while (scanf("%d%d",&n,&k)!=EOF) doit();
    return 0;
}
/*
4 2
1 2 7 3
6 5 8 3
7 8 10 5
9 6 13 9

2 1
1 5 3 5
1 5 100 5

2 1
1 5 2 5
1 5 100 5

2 1
0 5 3 5
1 5 100 5

2 1
0 5 2 5
1 5 100 5

3 2
1 5 1 50
2 5 2 50
1 5 1 50

3 2
1 0 1 100
1 0 1 100
0 0 2 0
*/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值