[DP]BZOJ 1190——[HNOI2007]梦幻岛宝珠 动态规划]

题目梗概

一个背包问题,但是有一些奇怪的条件。

背包大小<=230 N<=100

物品符合a2b(a<=10;b<=30)

题目梗概

把背包大小看成一个二进制数。

f[i][j]定义为前i位数,2i这位选择了j个大小。

枚举第i1位填k,显然剩下的jk都由第i位填满,所以可以得到转移方程f[i][j]=max(f[i][j],f[i][jk]+f[i1][min(2k+((w>>i1)&1),m)])

mi1的上限,因为a<=10,所以m=1000

这也是这么定义DP的好处,j,k的上限为m

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int m=1000;
int w,n,f[35][m+5],ans;
int main(){
    freopen("exam.in","r",stdin);
    freopen("exam.out","w",stdout);
    while(1){
        scanf("%d%d",&n,&w);
        if (n==-1&&w==-1) return 0;
        memset(f,0,sizeof(f));
        for (int i=1,a,x,b;i<=n;i++){
            scanf("%d%d",&a,&x);b=0;
            while(a%2==0) a>>=1,b++;
            for (int j=m;j>=a;j--) f[b][j]=max(f[b][j],f[b][j-a]+x);
        }
        ans=0;for (int j=0;j<=m;j++) ans=max(f[0][j],ans);
        for (int i=1;i<=30&&(1<<i)<=w;i++)
        for (int j=min(m,w>>i);j>=0;j--){
            for (int k=0;k<=j;k++) f[i][j]=max(f[i][j],f[i][j-k]+f[i-1][min(2*k+((w>>i-1)&1),m)]);
            ans=max(ans,f[i][j]);
        }
        printf("%d\n",ans);
    }
}
阅读更多
版权声明:本文为博主原创文章,未经博主同意允许转载。 https://blog.csdn.net/CHN_JZ/article/details/78165720
文章标签: BZOJ DP
所属专栏: CHNJZ的OI学习总结
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭