softmax和logistic回归的区别和联系

本文探讨了softmax回归与logistic回归的区别和联系。softmax是logistic回归的扩展,适用于多分类问题,输出各类别的概率,而logistic回归主要解决二分类问题,仅判断属于某类的概率。详细内容包括两种方法的数学表达式和应用场景。
摘要由CSDN通过智能技术生成

   首先先说结论,两者的主要不同体现在(1)softmax用来解决多分类问题,lr解决二分类问题(2)softmax输出每一类的概率值,并确定概率最大的类是正确的,lr只区别是还是不是。事实上softmax是lr的一般情况。下面具体来看。

1.Logistic回归

   一般线性分类器的是通过输入一系列的样本数据,学习一组权重系数 w0 w 0 , w1 w 1 wn w n 来进行分类,即:

x=w0+w1x1+...+wnxn x = w 0 + w 1 x 1 + . . . + w n x n

这里 x1 x 1 …. xn x n 是指每个样本的n个特征。
   Logistic回归引入了sigmoid函数来进行学习,如下所示:
f(x)=11+ex f ( x ) = 1 1 + e − x

   这里的x和上面的表示是一样的,总之要通过这个sigmoid函数来学习这些系数。很显然f(x)的范围是在0到1之间的,令输出的值大小为y。则有
P(y=1|x,w)=f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值