首先先说结论,两者的主要不同体现在(1)softmax用来解决多分类问题,lr解决二分类问题(2)softmax输出每一类的概率值,并确定概率最大的类是正确的,lr只区别是还是不是。事实上softmax是lr的一般情况。下面具体来看。
1.Logistic回归
一般线性分类器的是通过输入一系列的样本数据,学习一组权重系数 w0 w 0 , w1 w 1 … wn w n 来进行分类,即:
x=w0+w1x1+...+wnxn x = w 0 + w 1 x 1 + . . . + w n x n
这里 x1 x 1 …. xn x n 是指每个样本的n个特征。
Logistic回归引入了sigmoid函数来进行学习,如下所示:
f(x)=11+e−x f ( x ) = 1 1 + e − x
这里的x和上面的表示是一样的,总之要通过这个sigmoid函数来学习这些系数。很显然f(x)的范围是在0到1之间的,令输出的值大小为y。则有
P(y=1|x,w)=f