物流数据分析案例

1. 读入数据并查看

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# 配置中文显示
plt.rcParams['font.sans-serif']='KaiTi'
plt.rcParams['axes.unicode_minus']=False

在这里插入图片描述
在这里插入图片描述

通过上面对数据的查看,可以看出:
(1)数据一共1161行,10列;
(2)订单号、货品交货状况和数量存在缺失值,但是缺失值个数不大,可以考虑删除;
(3)销售金额列数据格式不统一,无法进行运算,需要进行处理

2.数据清洗

2.1 删除重复记录

在这里插入图片描述

2.2 删除缺失值

在这里插入图片描述

2.3 处理格式不统一的列:销售金额

在这里插入图片描述
在这里插入图片描述

2.4 异常值处理

在这里插入图片描述
去除销售金额为0的记录
在这里插入图片描述

2.5 去除货品交货状况首尾空格

在这里插入图片描述

3. 数据分析与可视化

3.1 每月交货状况分析

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.2 不同地区的交货状况分析

在这里插入图片描述

3.3 不同商品的交货情况

在这里插入图片描述

3.4 不同销售区域不同商品的交货情况

在这里插入图片描述
在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值