刷题参考:《代码随想录》
1-移除元素
链接: 27
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。 元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。
示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。
- 时间复杂度:O(n)
- 空间复杂度:O(1)
解法一:相向双指针
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int left = 0, right = nums.size() - 1;
while(left <= right)
{
if(nums[left] != val)
{
left++;
}
else
{
nums[left] = nums[right];
right--;
}
}
return left;
}
};
解法二:快慢指针
class Solution {
public:
int removeElement(vector<int>& nums, int val) {
int slowIndex = 0;
for (int fastIndex = 0; fastIndex < nums.size(); fastIndex++) {
if (val != nums[fastIndex]) {
nums[slowIndex++] = nums[fastIndex];
}
}
return slowIndex;
}
};
2-反转字符串
链接: 344
编写一个函数,其作用是将输入的字符串反转过来。输入字符串以字符数组 char[] 的形式给出。
不要给另外的数组分配额外的空间,你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。你可以假设数组中的所有字符都是 ASCII 码表中的可打印字符。
示例 1: 输入:[“h”,“e”,“l”,“l”,“o”] 输出:[“o”,“l”,“l”,“e”,“h”]
- 时间复杂度:O(n),其中 n 为字符数组的长度。一共执行了 n/2 次的交换。
- 空间复杂度:O(1)。只使用了常数空间来存放若干变量。
class Solution {
public:
void reverseString(vector<char>& s) {
int left = 0;
int right = s.size() - 1;
while(left <= right)
{
//swap(s[i],s[j]);
char tmp = s[left];
s[left] = s[right];
s[right] = tmp;
left++;
right--;
}
return;
}
};
3-替换空格
链接: 剑指Offer 05
请实现一个函数,把字符串 s 中的每个空格替换成"%20"。
示例 1: 输入:s = “We are happy.”,输出:“We%20are%20happy.”
从前向后填充就是O(n^2)的算法了,因为每次添加元素都要将添加元素之后的所有元素向后移动。
其实很多数组填充类的问题,都可以先预先给数组扩容带填充后的大小,然后在从后向前进行操作。这么做有两个好处:
- 不用申请新数组。
- 从后向前填充元素,避免了从前向后填充元素时,每次添加元素都要将添加元素之后的所有元素向后移动的问题。
- 时间复杂度:O(n) ,遍历统计、遍历修改皆使用O(n) 时间。
- 空间复杂度:O(1),由于是原地扩展 s 长度,因此使用 O(1) 额外空间。
class Solution {
public:
string replaceSpace(string s) {
int count = 0; // 统计空格的个数
int sOldSize = s.size();
for (int i = 0; i < s.size(); i++) {
if (s[i] == ' ') {
count++;
}
}
// 扩充字符串s的大小,也就是每个空格替换成"%20"之后的大小
s.resize(s.size() + count * 2);
int sNewSize = s.size();
// 从后先前将空格替换为"%20"
for (int i = sNewSize - 1, j = sOldSize - 1; j < i; i--, j--) {
if (s[j] != ' ') {
s[i] = s[j];
} else {
s[i] = '0';
s[i - 1] = '2';
s[i - 2] = '%';
i -= 2;
}
}
return s;
}
};
4-翻转字符串里的单词
链接: 151
给定一个字符串,逐个翻转字符串中的每个单词。
示例 1: 输入: “the sky is blue” 输出: “blue is sky the”
示例 2: 输入: " hello world! " 输出: “world! hello”
解释:输入字符串可以在前面或者后面包含多余的空格,但是反转后的字符不能包括。 示例 3: 输入: “a good example” 输出: “example good a”
解释: 如果两个单词间有多余的空格,将反转后单词间的空格减少到只含一个。
- 时间复杂度:O(n)。
- 空间复杂度:O(1)。
class Solution {
public:
void reverse(string& s, int start, int end){ //翻转,区间写法:左闭又闭 []
for (int i = start, j = end; i < j; i++, j--) {
swap(s[i], s[j]);
}
}
void removeExtraSpaces(string& s) {//去除所有空格并在相邻单词之间添加空格, 快慢指针。
int slow = 0;
for (int i = 0; i < s.size(); ++i) {
if (s[i] != ' ')
{ //遇到非空格就处理,即删除所有空格。
if (slow != 0) s[slow++] = ' '; //手动控制空格,给单词之间添加空格。slow != 0说明不是第一个单词,需要在单词前添加空格。
while (i < s.size() && s[i] != ' ')
{ //补上该单词,遇到空格说明单词结束。
s[slow++] = s[i++];
}
}
}
s.resize(slow); //slow的大小即为去除多余空格后的大小。
}
string reverseWords(string s) {
removeExtraSpaces(s); //去除多余空格,保证单词之间之只有一个空格,且字符串首尾没空格。
reverse(s, 0, s.size() - 1);
int start = 0; //removeExtraSpaces后保证第一个单词的开始下标一定是0。
for (int i = 0; i <= s.size(); ++i) {
if (i == s.size() || s[i] == ' ') { //到达空格或者串尾,说明一个单词结束。进行翻转。
reverse(s, start, i - 1); //翻转,注意是左闭右闭 []的翻转。
start = i + 1; //更新下一个单词的开始下标start
}
}
return s;
}
};
5-反转链表
链接: 206
题意:反转一个单链表。 示例: 输入: 1->2->3->4->5->NULL 输出: 5->4->3->2->1->NULL
解法一:双指针法
- 时间复杂度:O(n),其中 n 是链表的长度。需要遍历链表一次。
- 空间复杂度:O(1)。
class Solution {
public:
ListNode* reverseList(ListNode* head) {
ListNode* temp; // 保存cur的下一个节点
ListNode* cur = head;
ListNode* pre = NULL;
while(cur) {
temp = cur->next; // 保存一下 cur的下一个节点,因为接下来要改变cur->next
cur->next = pre; // 翻转操作
// 更新pre 和 cur指针
pre = cur;
cur = temp;
}
return pre;
}
};
解法二:递归法
- 时间复杂度:O(n)。
- 空间复杂度:O(n)。
class Solution {
public:
ListNode* reverse(ListNode* pre,ListNode* cur){
if(cur == NULL) return pre;
ListNode* temp = cur->next;
cur->next = pre;
// 可以和双指针法的代码进行对比,如下递归的写法,其实就是做了这两步
// pre = cur;
// cur = temp;
return reverse(cur,temp);
}
ListNode* reverseList(ListNode* head) {
// 和双指针法初始化是一样的逻辑
// ListNode* cur = head;
// ListNode* pre = NULL;
return reverse(NULL, head);
}
};
解法三:递归法
- 时间复杂度:O(n)。
- 空间复杂度:O(n)。
class Solution {
public:
ListNode* reverseList(ListNode* head) {
if (head == NULL || head->next == NULL) {
return head;
}
ListNode* ret = reverseList(head->next);
head->next->next = head;
head->next = NULL;
return ret;
}
};
6-删除链表的倒数第 N 个结点
链接: 19
给你一个链表,删除链表的倒数第 n 个结点,并且返回链表的头结点。 进阶:你能尝试使用一趟扫描实现吗?
示例 1: 输入:head = [1,2,3,4,5], n = 2 输出:[1,2,3,5]
示例 2: 输入:head = [1], n = 1 输出:[]
示例 3: 输入:head = [1,2], n = 1 输出:[1]
- 时间复杂度:O(L),其中 L 是链表的长度。
- 空间复杂度:O(1)。
class Solution {
public:
ListNode* removeNthFromEnd(ListNode* head, int n) {
ListNode* dummyHead = new ListNode(0);
dummyHead->next = head;
ListNode* slow = dummyHead;
ListNode* fast = dummyHead;
while(n-- && fast != NULL) {
fast = fast->next;
}
fast = fast->next; // fast再提前走一步,因为需要让slow指向删除节点的上一个节点
while (fast != NULL) {
fast = fast->next;
slow = slow->next;
}
slow->next = slow->next->next;
// ListNode *tmp = slow->next; C++释放内存的逻辑
// slow->next = tmp->next;
// delete nth;
return dummyHead->next;
}
};
7-链表相交
链接: 面试题 02.07
给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。
题目数据 保证 整个链式结构中不存在环。注意,函数返回结果后,链表必须 保持其原始结构 。
解法一: 双指针
- 时间复杂度:O(m+n),其中 m 和 n 是分别是链表headA 和headB 的长度。两个指针同时遍历两个链表,每个指针遍历两个链表各一次。
- 空间复杂度:O(1)。
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
if (headA == nullptr || headB == nullptr) {
return nullptr;
}
ListNode *pA = headA, *pB = headB;
while (pA != pB) {
pA = pA == nullptr ? headB : pA->next;
pB = pB == nullptr ? headA : pB->next;
}
return pA;
}
};
解法二:哈希表
- 时间复杂度:O(m+n),其中 m 和 n 是分别是链表 headA 和 headB 的长度。需要遍历两个链表各一次。
- 空间复杂度:O(m),其中 m 是链表headA 的长度。需要使用哈希集合存储链表 headA 中的全部节点。
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
unordered_set<ListNode *> visited;
ListNode *temp = headA;
while (temp != nullptr) {
visited.insert(temp);
temp = temp->next;
}
temp = headB;
while (temp != nullptr) {
if (visited.count(temp)) {
return temp;
}
temp = temp->next;
}
return nullptr;
}
};
解法三:双指针法
- 时间复杂度:O(m+2n),其中 m 和 n 是分别是链表headA 和headB 的长度。两个指针同时遍历两个链表,每个指针遍历两个链表各一次。
- 空间复杂度:O(1)。
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
ListNode* curA = headA;
ListNode* curB = headB;
int lenA = 0, lenB = 0;
while (curA != NULL) { // 求链表A的长度
lenA++;
curA = curA->next;
}
while (curB != NULL) { // 求链表B的长度
lenB++;
curB = curB->next;
}
curA = headA;
curB = headB;
// 让curA为最长链表的头,lenA为其长度
if (lenB > lenA) {
swap (lenA, lenB);
swap (curA, curB);
}
// 求长度差
int gap = lenA - lenB;
// 让curA和curB在同一起点上(末尾位置对齐)
while (gap--) {
curA = curA->next;
}
// 遍历curA 和 curB,遇到相同则直接返回
while (curA != NULL) {
if (curA == curB) {
return curA;
}
curA = curA->next;
curB = curB->next;
}
return NULL;
}
};
8-环形链表II
链接: 142
题意: 给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 为了表示给定链表中的环,使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。 说明:不允许修改给定的链表。
快慢指针
设开始位置到入环为a,环为b,相遇处距环入口为x,慢指针每次走1步,走s,快指针每次走2步,走f
- f = 2s;
- f = a + nb + x
- s = a + x //快指针相对慢指针每次走1,因此在慢指针走完一圈前一定能被追上
----> a + x = nb //n为相遇前快指针多走的圈数 - 环入口:a + mb //m为任意整数
----> 快慢指针相遇后再走a即可到达环入口
- 时间复杂度 O(n) :第二次相遇中,慢指针须走步数 a<a+b;第一次相遇中,慢指针须走步数a+b−x<a+b,其中 x 为双指针重合点与环入口距离;因此总体为线性复杂度;
- 空间复杂度 O(1) :双指针使用常数大小的额外空间。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
ListNode *detectCycle(ListNode *head) {
ListNode* fast = head;
ListNode* slow = head;
while(fast != NULL && fast->next != NULL) {
slow = slow->next;
fast = fast->next->next;
// 快慢指针相遇,此时从head 和 相遇点,同时查找直至相遇
if (slow == fast) {
ListNode* index1 = fast;
ListNode* index2 = head;
while (index1 != index2) {
index1 = index1->next;
index2 = index2->next;
}
return index2; // 返回环的入口
}
}
return NULL;
}
};
9-三数之和
链接: 15
给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0
?请你找出所有满足条件且不重复的三元组。 注意: 答案中不可以包含重复的三元组。 示例:给定数组 nums = [-1, 0, 1,
2, -1, -4],满足要求的三元组集合为: [ [-1, 0, 1], [-1, -1, 2] ]
- 时间复杂度:O(n2),数组排序O(NlogN),遍历数组 O(n),双指针遍历 O(n),总体O(NlogN)+O(n)∗O(n),O(n2)
- 空间复杂度:O(1)
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
// 找出a + b + c = 0
// a = nums[i], b = nums[left], c = nums[right]
for (int i = 0; i < nums.size(); i++) {
// 排序之后如果第一个元素已经大于零,那么无论如何组合都不可能凑成三元组,直接返回结果就可以了
if (nums[i] > 0) {
return result;
}
// 错误去重a方法,将会漏掉-1,-1,2 这种情况
//我们要做的是不能有重复的三元组,但三元组内的元素是可以重复的!
/*
if (nums[i] == nums[i + 1]) {
continue;
}
*/
// 正确去重a方法
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// 去重复逻辑如果放在这里,0,0,0 的情况,可能直接导致 right<=left 了,从而漏掉了 0,0,0 这种三元组
/*
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
*/
if (nums[i] + nums[left] + nums[right] > 0) right--;
else if (nums[i] + nums[left] + nums[right] < 0) left++;
else {
result.push_back(vector<int>{nums[i], nums[left], nums[right]});
// 去重逻辑应该放在找到一个三元组之后,对b 和 c去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
return result;
}
};
10-四数之和
链接: 18
题意:给定一个包含 n 个整数的数组 nums 和一个目标值 target,判断 nums 中是否存在四个元素 a,b,c 和 d ,使得 a + b + c + d 的值与 target 相等?找出所有满足条件且不重复的四元组。 注意:答案中不可以包含重复的四元组。
示例:给定数组 nums = [1, 0, -1, 0, -2, 2],和 target = 0。
满足要求的四元组集合为: [ [-1, 0, 0, 1], [-2, -1, 1, 2], [-2, 0, 0, 2] ]
- 时间复杂度:O(n3),其中 n 是数组的长度。排序的时间复杂度是O(nlogn),枚举四元组的时间复杂度是 O(n3),因此总时间复杂度为O(n3+nlogn)=O(n3)。
- 空间复杂度:O(n),其中 n 是数组的长度。空间复杂度主要取决于排序额外使用的空间。此外排序修改了输入数组 nums,实际情况中不一定允许,因此也可以看成使用了一个额外的数组存储了数组nums 的副本并排序。
class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> result;
sort(nums.begin(), nums.end());
for (int k = 0; k < nums.size(); k++) {
// 剪枝处理,target可能为负
if (nums[k] > target && nums[k] >= 0) {
break; // 这里使用break,统一通过最后的return返回
}
// 对nums[k]去重
if (k > 0 && nums[k] == nums[k - 1]) {
continue;
}
for (int i = k + 1; i < nums.size(); i++) {
// 2级剪枝处理
if (nums[k] + nums[i] > target && nums[k] + nums[i] >= 0) {
break;
}
// 对nums[i]去重
if (i > k + 1 && nums[i] == nums[i - 1]) {
continue;
}
int left = i + 1;
int right = nums.size() - 1;
while (right > left) {
// nums[k] + nums[i] + nums[left] + nums[right] > target 会溢出
if ((long) nums[k] + nums[i] + nums[left] + nums[right] > target) {
right--;
// nums[k] + nums[i] + nums[left] + nums[right] < target 会溢出
} else if ((long) nums[k] + nums[i] + nums[left] + nums[right] < target) {
left++;
} else {
result.push_back(vector<int>{nums[k], nums[i], nums[left], nums[right]});
// 对nums[left]和nums[right]去重
while (right > left && nums[right] == nums[right - 1]) right--;
while (right > left && nums[left] == nums[left + 1]) left++;
// 找到答案时,双指针同时收缩
right--;
left++;
}
}
}
}
return result;
}
};