上次学习过marshal模块用于序列化和反序列化,但marshal的功能比较薄弱,只支持部分内置数据类型的序列化/反序列化,对于用户自定义的类型就无能为力,同时marshal不支持自引用(递归引用)的对象的序列化。所以直接使用marshal来序列化/反序列化可能不是很方便。还好,python标准库提供了功能更加强大且更加安全的pickle和cPickle模块。
cPickle模块是使用C语言实现的,所以在运行效率上比pickle要高。但是cPickle模块中定义的类型不能被继承(其实大多数时候,我们不需要从这些类型中继承。)。cPickle和pickle的序列化/反序列化规则是一样的,我们可以使用pickle序列化一个对象,然后使用cPickle来反序列化。同时,这两个模块在处理自引用类型时会变得更加“聪明”,它不会无限制的递归序列化自引用对象,对于同一对象的多次引用,它只会序列化一次。例如:
1 | import marshal, pickle |
2 | |
3 | list = [1] |
4 | list.append(list) |
5 | byt1 = marshal.dumps(list) #出错, 无限制的递归序列化 |
6 | byt2 = pickle.dumps(list) #No problem |
pickle的序列化规则
Python规范(Python-specific)提供了pickle的序列化规则。这就不必担心不同版本的Python之间序列化兼容性问题。默认情况下,pickle的序列化是基于文本的,我们可以直接用文本编辑器查看序列化的文本。我们也可以序列成二进制格式的数据,这样的结果体积会更小。更详细的内容,可以参考Python手册pickle模块。
下面就开始使用pickle吧~
pickle.dump(obj, file[, protocol])
序列化对象,并将结果数据流写入到文件对象中。参数protocol是序列化模式,默认值为0,表示以文本的形式序列化。protocol的值还可以是1或2,表示以二进制的形式序列化。
pickle.load(file)
反序列化对象。将文件中的数据解析为一个Python对象。下面通过一个简单的例子来演示上面两个方法的使用:
1 | #coding=gbk |
2 | |
3 | import pickle, StringIO |
4 | |
5 | class Person(object): |
6 | '''自定义类型。 |
7 | ''' |
8 | def __init__(self, name, address): |
9 | self.name = name |
10 | self.address = address |
11 | |
12 | def display(self): |
13 | print 'name:', self.name, 'address:', self.address |
14 | |
15 | jj = Person("JGood", "中国 杭州") |
16 | jj.display() |
17 | file = StringIO.StringIO() |
18 | |
19 | pickle.dump(jj, file, 0) #序列化 |
20 | #print file.getvalue() #打印序列化后的结果 |
#del Person #反序列的时候,必须能找到对应类的定义。否则反序列化操作失败。 | |
21 | |
22 | file.seek(0) |
23 | jj1 = pickle.load(file) #反序列化 |
24 | jj1.display() |
25 | |
26 | file.close() |
注意:在反序列化的时候,必须能找到对应类的定义,否则反序列化将失败。在上面的例子中,如果取消#del Person的注释,在运行时将抛AttributeError异常,提示当前模块找不到Person的定义。
pickle.dumps(obj[, protocol])
pickle.loads(string)
我们也可以直接获取序列化后的数据流,或者直接从数据流反序列化。方法dumps与loads就完成这样的功能。dumps返回序列化后的数据流,loads返回的序列化生成的对象。
python模块中还定义了两个类,分别用来序列化、反序列化对象。
class pickle.Pickler(file[, protocal]):
该类用于序列化对象。参数file是一个类文件对象(file-like object),用于保存序列化结果。可选参数表示序列化模式。它定义了两个方法:
dump(obj):
将对象序列化,并保存到类文件对象中。参数obj是要序列化的对象。
clear_memo()
清空pickler的“备忘”。使用Pickler实例在序列化对象的时候,它会“记住”已经被序列化的对象引用,所以对同一对象多次调用dump(obj),pickler不会“傻傻”的去多次序列化。下面是一个简单的例子:
1 | #coding=gbk |
2 | import pickle, StringIO |
3 | |
4 | class Person(object): |
5 | '''自定义类型。 |
6 | ''' |
7 | def __init__(self, name, address): |
8 | self.name = name |
9 | self.address = address |
10 | |
11 | def display(self): |
12 | print 'name:', self.name, 'address:', self.address |
13 | |
14 | fle = StringIO.StringIO() |
15 | pick = pickle.Pickler(fle) |
16 | person = Person("JGood", "Hangzhou China") |
17 | |
18 | pick.dump(person) |
19 | val1 = fle.getvalue() |
20 | print len(val1) |
21 | |
22 | pick.clear_memo() #注释此句,再看看运行结果 |
23 | |
24 | pick.dump(person) #对同一引用对象再次进行序列化 |
25 | val2 = fle.getvalue() |
26 | print len(val2) |
27 | |
28 | #---- 结果 ---- |
29 | #148 |
30 | #296 |
31 | # |
32 | #将这行代码注释掉:pick.clear_memo() |
33 | #结果为: |
34 | #148 |
35 | #152 |
36 |
class pickle.Unpickler(file):
该类用于反序列化对象。参数file是一个类文件(file-like object)对象,Unpickler从该参数中获取数据进行反序列化。
load():
反序列化对象。该方法会根据已经序列化的数据流,自动选择合适的反序列化模式。
1 | #.... 接上个例子中的代码 |
2 | |
3 | fle.seek(0) |
4 | unpick = pickle.Unpickler(fle) |
5 | print unpick.load() |
6 |
上面介绍了pickle模块的基本使用,但和marshal一样,并不是所有的类型都可以通过pickle序列化的。例如对于一个嵌套的类型,使用pickle序列化就失败。例如:
1 | class A(object): |
2 | class B(object): |
3 | def __init__(self, name): |
4 | self.name = name |
5 | |
6 | def __init__(self): |
7 | print 'init A' |
8 | |
9 | b = A.B("my name") |
10 | print b |
11 | c = pickle.dumps(b, 0) #失败哦 |
12 | print pickle.loads(c) |
关于pickle支持的序列化类型,可以参考Python手册。
Python手册中的pickle模块,介绍了更高级的主题,例如自定义序列化过程。有时间再和大家分享。