- 博客(552)
- 收藏
- 关注
原创 ROS中稀疏、半稠密与稠密地图的详细解析及其在导航中的应用
稀疏地图是一种只包含环境中关键特征点(如角点、边缘点等)的地图。这类地图通常由较少的数据点构成,强调关键位置和结构信息,忽略细节部分。半稠密地图介于稀疏地图和稠密地图之间,包含较多的环境信息但不如稠密地图详尽。它不仅包含关键特征点,还保留了一定的区域信息,能够描述环境的部分结构细节。稠密地图包含环境的全面信息,详细描述了环境中的每一个点或像素。它提供了环境的高分辨率表示,能够捕捉到丰富的细节和复杂的结构。
2025-03-20 22:39:10
778
原创 视觉同步定位与地图构建(Visual SLAM)架构详解
前端(Front-End)图像获取与预处理:通过摄像头获取连续的视频帧,对图像进行畸变校正、灰度化等预处理操作。特征提取与匹配:从图像中提取关键特征点(如角点、边缘等),并在连续帧或多视角间进行特征匹配,以获取相对运动信息。运动估计(姿态估计):利用匹配的特征点对,估计摄像头的相对位姿变化,常用方法包括PnP(Perspective-n-Point)算法、EPnP等。后端(Back-End)地图构建:根据前端提供的位姿信息与特征点,构建环境的三维地图,常用的数据结构包括稀疏地图和稠密地图。
2025-03-20 22:37:51
879
原创 视觉里程计(Visual Odometry)详解
视觉里程计旨在通过处理连续的图像序列,估计摄像头的相对位姿变化,即平移和旋转。与惯性里程计(基于IMU)或激光里程计(基于激光雷达)的传统方法相比,视觉里程计具有成本低、信息丰富和适应性强等优势。然而,其性能受限于光照变化、动态环境和特征稀缺等因素,仍面临诸多挑战。视觉里程计作为一种基于视觉信息的位姿估计技术,在多个领域中发挥着重要作用。其核心在于通过图像特征的提取与匹配,结合几何优化算法,实现对设备运动的精确追踪。
2025-03-20 22:37:19
475
原创 移动平台坐标系的命名规范与语义定义(基于ROS的REP 105)
本文档(REP 105)由Wim Meeussen编写,旨在为移动平台在ROS(机器人操作系统)中使用的坐标系提供命名规范和语义定义。通过统一的坐标系规范,促进驱动程序、模型和库的集成与重用,提升软件组件的兼容性和可扩展性。base_link固定在移动机器人基座上的刚性坐标系。其位置和方向可以任意定义,每种硬件平台的base_link位置和方向可能不同。参考了REP 103中对坐标系方向的偏好规定。odom世界固定坐标系,表示机器人的里程计位置。
2025-03-18 22:25:51
758
原创 视觉SLAM在定位与建图中的实现机制详解——以ORB-SLAM2 RGB-D相机为例
视觉同步定位与建图(Visual Simultaneous Localization and Mapping,视觉SLAM)技术通过处理视觉传感器(如RGB-D相机)获取的图像数据,实现设备在未知环境中的实时定位与高精度地图构建。本文将深入探讨视觉SLAM的工作流程与核心原理,重点分析ORB-SLAM2在RGB-D相机环境下的具体实现过程,并通过详细示例说明其应用。
2025-03-18 22:25:13
944
原创 深入理解ROS中的frame_id与child_frame_id:定义、用途与TF树中的应用
在机器人操作系统(Robot Operating System, ROS)中,坐标变换(Transformations)是描述和管理不同坐标系之间关系的核心机制。frame_id与作为坐标变换系统中的关键参数,扮演着至关重要的角色。本文将从定义、用途、应用方法及其在TF树中的展示等多个方面,详细解析frame_id与,并通过C++示例阐明其实际应用。frame_id定义frame_id是ROS消息头(header)中的一个字段,用于标识消息所参考的坐标系。它通常是一个字符串,代表一个具体的坐标框架名称。
2025-03-18 22:24:41
1019
原创 深入解析ROS中的map_server:功能、使用方法、工作原理及地图文件格式
在机器人操作系统(ROS)生态中,map_server是一个关键的功能包,负责加载、管理和发布环境地图数据。它为机器人导航、定位与路径规划等核心功能提供基础支持。本文将详细探讨map_server的定义、功能、使用方法、工作原理以及ROS中地图文件的格式,并通过实例进行说明。map_server是ROS中的一个节点,主要用于加载预先构建的静态地图,并将其发布为ROS话题(通常为/map),供其他节点如导航栈(navigation stack)使用。
2025-03-18 22:23:57
857
原创 深入解析ROS tf2变换中的父子坐标系
在tf2框架中,父子坐标系(Parent-Child Frames)用于描述不同参考系之间的层级关系。每个坐标系(Frame)在tf2中都有一个唯一的名称,并且在树状结构中,任何一个坐标系只能有一个直接的父坐标系,但可以拥有多个子坐标系。这种层级关系类似于计算机文件系统中的目录结构,有助于组织和管理复杂的系统。world(全局坐标系)└── base_link(机器人底座坐标系)├── laser(激光传感器坐标系)└── camera(摄像头坐标系)在上述结构中,world是根坐标系,
2025-03-18 22:23:27
549
原创 深入解析 ORB-SLAM 中地图点的坐标系及其表示
在 SLAM 系统中,坐标系的选择和定义至关重要,因为所有地图点和相机位姿都是相对于某一固定坐标系进行表示的。世界坐标系(World Coordinate System):系统初始化时选定的基准坐标系,通常与第一帧相机位姿对齐。相机坐标系(Camera Coordinate System):每个关键帧(KeyFrame)都有自己的相机坐标系,描述该帧相对于世界坐标系的位姿。
2025-03-18 22:22:36
634
原创 基于点云配准的里程计误差修正方法
通过结合里程计和激光雷达点云配准算法,机器人能够在实时运动中有效检测并修正位移误差。里程计提供了高频率的位移估计,而点云配准则在较低频率下提供高精度的误差校正。结合这两者的优势,能够显著提升机器人在复杂环境中的定位精度和导航可靠性。
2025-03-18 22:21:34
340
原创 构建ORBSLAM2中的完整TF树:集成map、odom、base_link与camera_link
map: 全局静态地图坐标系,用于表示环境的绝对位置。odom: 里程计坐标系,反映机器人自启动以来的相对运动。base_link: 机器人底盘坐标系,通常与机器人几何中心对齐。: 相机坐标系,固定在机器人底盘上的相机位置。TF树的构建旨在准确描述这些坐标系之间的相对位置与姿态,以实现精确的定位与导航。通过上述详细解析,我们可以看到在ORBSLAM2中,构建一个准确的TF树涉及多个变换的获取与修正。实时获取,确保对机器人即时运动的追踪。准确测量,保证机器人底盘与相机的相对位置稳定。利用定位算法。
2025-03-18 22:20:57
752
原创 在Ubuntu 20.04与ROS环境下利用ORBSLAM2实现视觉SLAM:构建map→odom与odom→base_link转换关系的详尽解析
在ROS中,不同的组件和传感器通常位于不同的坐标系下。理解并正确构建这些坐标系之间的转换关系,是实现系统各部分协调工作的前提。map: 全局固定坐标系,表示SLAM系统构建的环境地图。用于全局定位与导航。odom: 里程计坐标系,表示从机器人的初始位置开始的连续位姿估计。通常由里程计或视觉里程计提供。base_link: 机器人基座坐标系,位于机器人中心,通常与机器人运动机构(如轮子)固定。: 相机坐标系,表示RGB-D相机的位置与方向。为了计算并发布map→odom。
2025-03-18 22:19:16
818
原创 ros 移动机器人坐标系规范详解(Coordinate Frames for Mobile Robots)
轴向对齐(Axis Alignment)X轴(X-axis):指向东(East)。Y轴(Y-axis):指向北(North)。Z轴(Z-axis):指向上(Up)。高度基准(Height Reference):若无其他参考,Z轴的零点应与 WGS84 椭球面(WGS84 Ellipsoid)的高度相一致。这些惯例确保地图坐标系与地理方向的一致性,便于与全球定位系统(GPS)等外部参考源的集成。某些应用场景可能需要基于特定的参考位置定义地图坐标系。海平面高度(Mean Sea Level, MSL)
2025-03-18 22:18:30
723
原创 Ubuntu 20.04 下 ROS 坐标系系统详解
在ROS中,坐标系用于描述机器人及其各部件在空间中的位置和姿态。ROS采用TF(Transform)库来管理不同坐标系之间的变换关系,确保各部分数据的一致性和准确性。通过TF,开发者可以方便地在不同坐标系之间进行转换,从而实现复杂的机器人任务。
2025-03-18 22:17:45
638
原创 SLAM总结-视觉建图详细归纳与导航应用
本文系统总结和分析了视觉建图中的地图类型、建图方法、地图的保存与加载,重点探讨了不同地图在定位、导航、避障、3D重建和人机交互中的应用及其获取方法。特别是针对导航部分,详细说明了哪些地图类型可以转换为栅格地图和八叉树地图,以及转换的具体方法和限制。
2025-03-18 22:16:48
688
原创 ROS中的基本坐标系解析:map、odom、base_link与base_laser
在机器人操作系统(ROS)中,理解不同的坐标系及其相互关系是进行机器人导航与定位的基础。这四大坐标系及其相互关系,开发者可以更有效地进行机器人系统的设计与调试,提升机器人的自主性和可靠性。理解并正确使用ROS中的基本坐标系对于实现精准的机器人导航和定位至关重要。,并探讨它们在实际应用中的作用和相互转换关系。
2025-03-18 22:16:09
294
原创 ROS导航栈在Ubuntu 20.04中的详解
ROS导航栈是一套集成的ROS包和节点集合,旨在为机器人提供自主定位、路径规划、运动控制和避障等功能。它允许机器人在未知或已知的环境中进行自主导航,从一个位置移动到另一个位置,同时避开障碍物并优化路径。
2025-03-18 22:15:38
527
原创 ROS导航栈中的move_base模块详解:架构、组件关系与数据流
Robot Operating System(ROS)作为广泛应用于机器人开发的开源框架,其导航栈中的move_base模块是实现机器人自主导航的核心组件。本文将深入解析move_base模块的整体架构,详述其主要组成部分及相互关系,探讨节点、话题与传感器数据的流向,并通过实例说明这些组件如何协同工作以实现高效、稳定的自主导航功能。
2025-03-18 22:15:05
1221
原创 ROS中的三维占用网格地图与八叉树地图详尽解析
三维占用网格地图(Occupancy Grid Map,OGM)是一种基于栅格化(Grid-based)的环境表示方法,将三维空间划分为规则的三维网格单元(体素,Voxel)。每个体素包含一个占用概率值(Occupancy Probability),表示该体素被障碍物占据的可能性。数学上,空间被划分为离散的体素集合,每个体素 ( v ) 的占用概率 ( P(v) ) 通常在0(空闲)到1(被占据)之间。
2025-02-24 21:30:00
1402
原创 ROS中的基本坐标系解析:map、odom、base_link与base_laser
在机器人操作系统(ROS)中,理解不同的坐标系及其相互关系是进行机器人导航与定位的基础。这四大坐标系及其相互关系,开发者可以更有效地进行机器人系统的设计与调试,提升机器人的自主性和可靠性。理解并正确使用ROS中的基本坐标系对于实现精准的机器人导航和定位至关重要。,并探讨它们在实际应用中的作用和相互转换关系。
2025-02-24 21:29:23
702
原创 ROS中的move_base在Ubuntu 20.04中的详解
move_base是ROS导航栈中的一个重要节点,负责接收目标位置信息,进行路径规划,并控制机器人沿规划路径移动。它整合了全局规划器和局部规划器,通过协调这些组件,实现机器人在复杂环境中的自主导航。
2025-02-24 21:28:52
1046
原创 ROS中的move_base模块:架构、组件及其协同工作详解
move_base是ROS导航栈中的一个高级接口节点,负责集成路径规划、局部避障和执行运动命令等功能。它通过协调全局规划器和局部规划器,结合传感器数据,计算出一条安全且高效的路径,引导机器人从起始位置移动到目标位置。
2025-02-24 21:28:22
976
原创 ROS中map、odom、base_link坐标系的理解及其在AMCL中的关系
map坐标系,也称为地图坐标系,是一个全局固定的参考坐标系,用于表示机器人所在环境的静态地图。提供机器人进行全局路径规划的基础框架。作为机器人定位的全局参考,确保机器人在整个环境中的一致性定位。在ROS框架下,map、odom、base_link三个坐标系各自承担不同的职责,共同构建了机器人精准定位与自主导航的基础。map坐标系提供全局参考,odom坐标系记录机器人即时运动,base_link坐标系代表机器人本体。
2025-02-24 21:27:52
751
原创 ROS中header.frame_id的详细解析及其在不同坐标系间关联的应用
在ROS消息中,headerseq(序列号)、stamp(时间戳)和frame_id。其中,frame_id是一个字符串,指定了消息数据所引用的坐标系(coordinate frame)。它用于标识数据的空间参考系,确保不同传感器数据和机器人的运动信息能够在统一的坐标系下进行整合与处理。例如,在传感器数据消息(如激光雷达、摄像头)中,指定了传感器的安装坐标系,使得传感器数据能够正确地映射到机器人的整体坐标系中。
2025-02-24 21:27:21
840
原创 ROS 八叉树地图构建详解:使用 octomap_server 实现增量式建图
传感器坐标系 (:点云数据的坐标系,例如rslidar。全局坐标系 (:全局地图的坐标系,例如map。点云预处理:根据配置参数进行滤波,如地面滤波、高度限制等。点云转换:将点云数据从传感器坐标系转换到全局坐标系。八叉树更新:遍历点云中的每个点,更新八叉树中的对应体素概率。颜色处理(如启用):计算并存储每个体素的平均 RGB 颜色。:负责接收点云数据,获取 TF 变换,并调用插入函数更新八叉树。insertScan:将单帧点云数据插入到八叉树中,完成地图的更新。
2025-02-24 21:26:51
955
原创 ROS 中的里程计(odom):定义、应用与工作原理详解
*里程计(Odometry)**是指通过测量机器人运动过程中的各项数据(如轮速、转向角等),来估算机器人相对于初始位置的位移和姿态变化。在ROS中,odom通常指的是ROS框架下实现的里程计信息发布与处理机制,用于支持机器人自主导航和定位。
2025-02-24 21:26:20
565
原创 ORB_SLAM2中的坐标系转换矩阵Tcw与Twc详解
含义Tcw表示从世界坐标系转换到相机坐标系的变换矩阵。数学表达其中,( W )为世界坐标系中的点,( C )为相机坐标系中的点。组成Tcw由旋转矩阵Rcw和平移向量tcw组成,即:含义Twc表示从相机坐标系转换到世界坐标系的变换矩阵,即Tcw的逆矩阵。数学表达计算关系其中,Rcw^T是Rcw的转置,twc为相机在世界坐标系中的位置。
2025-02-24 21:25:50
903
原创 进程与线程的深入解析及实例说明
进程和线程是操作系统中管理程序执行的基本单位,各自具有不同的特性和适用场景。进程提供了资源的隔离和独立性,适用于需要高可靠性和安全性的应用;线程则提供了高效的资源共享和通信,适用于需要高并发和高性能的场景。理解并合理选择进程与线程的使用,对于开发高效、稳定的应用程序具有重要意义。
2025-02-24 21:25:20
852
原创 解决Ubuntu 20.04中ROS多工作空间包名冲突导致编译路径冲突问题
在ROS开发中,合理管理多工作空间尤为重要,尤其是在多个工作空间中存在同名包的情况下。通过统一工作空间管理、调整环境变量优先级、隔离工作空间构建等方法,可以有效避免编译时的路径冲突问题,确保项目的稳定性和可维护性。如果不同工作空间中存在同名包,环境变量中路径的先后顺序将决定编译工具优先使用哪个包。:当多个工作空间之间存在依赖关系时,若依赖的包在不同工作空间中存在不同版本,编译时可能会选取错误的版本,导致兼容性问题。)在解析包路径时,无法正确区分不同工作空间中的同名包,导致编译错误或使用了错误的包版本。
2025-02-24 21:24:46
441
原创 相机信息(camera_info)与相机内参的对应关系详解
消息中的内参为图像处理提供了必要的几何和光学信息。准确的内参对于各种计算机视觉任务至关重要,因此在使用前应确保相机已正确校准,并在中正确配置相关参数。通过理解和正确应用这些内参,可以实现高精度的图像处理和三维重建。
2025-02-24 21:23:57
900
原创 深入解析Ubuntu 20.04中ROS的话题重映射机制:定义、用途与工作原理
话题重映射是ROS提供的一种机制,允许用户在运行节点时动态更改节点订阅或发布的ROS话题名称。通过重映射,用户可以将节点原本使用的默认话题名映射到其他实际使用的话题名,避免节点间话题名冲突或适应不同的系统配置需求。话题重映射是ROS中实现节点间灵活通信的重要机制,通过在启动文件或命令行中指定重映射规则,用户可以在不修改节点代码的情况下,更改节点订阅或发布的话题名称。这不仅提升了系统的灵活性和模块化程度,还方便了复杂系统的配置与管理。
2025-02-24 21:23:27
613
原创 深入解析Ubuntu 20.04中ROS的rosAsyncSpinner
是ROS C++客户端库(roscpp)中提供的一个类,用于在独立的线程中处理回调函数。与传统的方法不同,允许多线程并发处理回调,从而提高节点的响应能力和处理效率。是ROS中实现高效、并发回调处理的重要工具。通过在独立线程中处理回调函数,提供了比传统更高的灵活性和性能,特别适用于需要同时处理多个任务或高频率回调的ROS节点。理解其工作原理和正确使用方法,有助于开发出响应迅速、性能优越的机器人应用程序。在多线程环境下,开发者还需注意线程安全和资源同步,以充分发挥的优势。
2025-02-24 21:22:55
464
原创 理解 camera_info 与相机内参的对应关系
消息包含了相机的校准信息,这些信息在图像处理流水线中用于校正畸变、图像校正和三维点投影等操作。Header(头部信息):包括时间戳和坐标框架ID,用于同步图像和校准信息。Calibration Parameters(校准参数):包括图像尺寸、畸变模型、内参矩阵等。Operational Parameters(操作参数):如图像区域和像素合并(Binning)信息。消息在 ROS 中扮演着关键角色,携带了详细的相机内参和校准信息。正确理解和配置中的各项参数,对于实现精确的图像处理和三维重建至关重要。
2025-02-24 21:22:24
948
原创 深入解析Ubuntu 20.04中ROS的octomap_server:功能、使用方法与可视化实现
是ROS中的一个节点包,旨在将传感器(如激光雷达、深度相机等)获取的点云数据转换为OctoMap格式的3D环境地图。OctoMap使用八叉树数据结构来表示三维空间,使得地图在保持高分辨率的同时,占用的存储空间相对较小。不仅能够实时更新地图,还支持地图的保存与加载,广泛应用于机器人自主导航与环境感知领域。在ROS中作为3D环境地图构建与管理的重要工具,凭借其高效的八叉树数据结构和实时更新能力,为机器人自主导航与环境感知提供了坚实的基础。在Ubuntu 20.04环境下,通过合理的安装、配置与使用,结合。
2025-02-23 21:19:23
990
原创 深入解析Ubuntu 20.04中ROS的Launch机制:定义、用途与工作原理
launch是ROS中用于管理和启动多个节点及其相关参数的工具。通过launch文件,用户可以一次性启动多个节点、设置参数、配置话题及服务等,从而简化复杂系统的部署过程。launch文件通常采用XML格式编写(在ROS Noetic及之前版本),并以.launch为文件扩展名。ROS中的launch机制为复杂机器人系统的管理与部署提供了极大的便利。通过launch文件,用户可以集中定义多个节点的启动顺序、参数配置及依赖关系,提升系统的可维护性和可扩展性。
2025-02-23 21:17:59
905
原创 深入解析Ubuntu 20.04中ROS与OpenCV的图像格式及其相互转换
在ROS中,图像数据通常通过消息类型进行传输。header: 包含时间戳和坐标框架信息。height: 图像的高度(像素数)。width: 图像的宽度(像素数)。encoding: 图像的编码格式,如rgb8bgr8mono8等。: 指示数据是否采用大端字节序。step: 一行图像数据的字节数。data: 实际的图像数据,以一维字节数组形式存储。OpenCV中最常用的图像格式是cv::Mat,它是一个多维矩阵数据结构,用于存储图像的像素数据。cv::Matrows: 图像的行数(高度)。
2025-02-23 21:17:23
562
原创 深入解析Ubuntu 20.04 ROS中的message_filters库
是ROS中的一个库,旨在提供高效、灵活的消息过滤与同步机制。它允许开发者基于特定条件对接收到的消息进行过滤、组合和同步处理,尤其在处理来自多个传感器或节点的异步消息时尤为重要。该库通过不同类型的过滤器(如时间同步器、队列过滤器等),简化了复杂消息处理逻辑的实现,提高了系统的模块化与可维护性。使用选择合适的同步策略,如库在ROS中提供了强大的消息过滤与同步功能,极大地简化了多源数据处理的复杂性。通过灵活的同步策略与高效的消息管理机制,开发者能够轻松实现高性能、可靠的机器人应用。掌握。
2025-02-23 21:16:39
743
原创 深入解析ORB-SLAM2中的ORB特征点提取:定义、用途、工作过程与原理
ORB(Oriented FAST and Rotated BRIEF)是一种结合了FAST关键点检测器和BRIEF描述符的特征提取算法。ORB通过对FAST和BRIEF的改进,克服了它们各自的局限性,提供了一种高效、旋转不变且具有尺度不变性的特征点检测与描述方法。ORB特征点提取在ORB-SLAM2中扮演了至关重要的角色,负责从输入图像中高效、鲁棒地提取有意义的特征点及其描述符。
2025-02-23 21:14:55
753
原创 深入解析C++智能指针:定义、用途、原理与实用示例
引言智能指针的定义智能指针的种类与特点智能指针的用途与优势智能指针的工作原理与内存管理智能指针的使用方法创建与初始化基本操作与标准库容器的结合实用示例:管理资源的智能指针示例代码代码详解最佳实践与注意事项总结参考资料智能指针是一种类模板,用于管理动态分配的对象,通过智能指针的生命周期自动管理资源的分配与释放。与原生指针不同,智能指针通过RAII(资源获取即初始化)机制,确保资源在智能指针对象生命周期结束时被正确释放,从而防止资源泄漏。
2025-02-23 21:08:18
1224
原创 正确理解与设置 mDepthMapFactor 参数以生成有效的点云数据
是一个缩放因子,用于将深度图中的原始深度值转换为实际物理单位(通常为米)。深度相机输出的深度图像通常以特定的单位表示,如毫米(mm)或微米(µm)。为了在点云生成过程中使用一致的单位(如米),需要通过进行缩放。公式如下:dd其中,d为转换后的深度值。确定深度图的输出单位。根据单位设置合适的。验证转换后的深度值是否在合理范围内。通过正确设置,您可以确保深度值被正确转换,从而生成准确且完整的点云数据。
2025-02-23 21:07:41
726
ros-arduino-bridge py3 双路pid
2023-09-15
ros_arduino_bridge py3
2023-05-16
TA创建的收藏夹 TA关注的收藏夹
TA关注的人