奶牛开会 最短路

Description

One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ XN). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.

Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.

Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?

Input

Line 1: Three space-separated integers, respectively: N, M, and X
Lines 2.. M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.

Output

Line 1: One integer: the maximum of time any one cow must walk.

Sample Input

4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3

Sample Output

10

Hint

Cow 4 proceeds directly to the party (3 units) and returns via farms 1 and 3 (7 units), for a total of 10 time units.

英语不好╮(╯﹏╰)╭翻译不靠谱 自己yy一下
题意:
解释你说下样例
第一行4个点 8条边 到2开会(终点)
 算1到2 加2 到 1的权值和,与3 到 2加 2到3的权值和,4到2加2到4的权值和 ,取最大值输出。

PS:数组别开太大,重点反向建边。
#include <iostream>
#include <cstdio>
#include <queue>
#include <cstring>
using namespace std;
int V,E,s,t,tot;
const int size = 20000;
int first[size],next[size];
long long dis[size];
bool used[size];
long long ans[10000];
long long tt[1000];
struct edge
{
	int from;
	int to;
	long long d;
}es[size];
struct date
{
	int f,t,d;
}in[size];
void jt(int f,int t,int d)
{
	es[++tot]=(edge){f,t,d};
	next[tot]=first[f];
	first[f]=tot;
}
queue <int> q;
void spfa(int s)
{
	for(int i=1;i<=V;i++)
		dis[i]=2147483641234567ll;
	dis[s]=0;
	q.push(s);
	used[s]=1;
	while (!q.empty())
	{
		int u=q.front();
		q.pop();
		used[u]=0;
		for(int i=first[u];i!=0;i=next[i])
		{
			int v=es[i].to;
			if(dis[v]>dis[u]+es[i].d)
			{
				dis[v]=dis[u]+es[i].d;
				if(used[v]==0)
				{
					q.push(v);
					used[v]=1;
				}
			}
		}
	}
}
void init()
{
	memset(es,0,sizeof(es));
	memset(first,0,sizeof(first));
	memset(next,0,sizeof(next));
	tot = 0;
}
int read()
{
	int x = 0 , f = 1;
	char in = getchar();
	while(in < '0' || in > '9')
	{
		if(in == '-')
			f = -1;
		in = getchar();
	}
	while(in >= '0' && in <= '9')
	{
		x = x * 10 + in - '0';
		in = getchar();
	}
	return x * f;
}
int main()
{
		 
		memset(in,0,sizeof(in));
		init();	
		int ss;
		V = read() , E = read(),ss=read(); 
		for(int i=1;i<=E;i++)
		{
			in[i].f = read() , in[i].t =  read() , in[i].d = read();
			jt(in[i].f,in[i].t,in[i].d);
		}
		spfa(ss);
	
		for(int i=1;i<=V;i++)
		{
			ans[i]+=dis[i];
		}
		init();
		for(int i=1;i<=E;i++)
			jt(in[i].t,in[i].f,in[i].d);
		spfa(ss);
		for(int i=1;i<=V;i++)
		{
			ans[i] += dis[i];
		}
		int da=-1;
		for(int i=1;i<=V;i++)
		if(ans[i]>da)
		da=ans[i];
		printf("%d\n",da);
		return 0;
}

转载于:https://my.oschina.net/u/3009052/blog/780149

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值