gogo小Sa的专栏

兴趣遍地都是,专注和持之以恒才是真正稀缺的。

【人脸识别7】haar+CART+Adaboost+Cascade训练过程分析

【人脸识别7】haar+adaboost+cart训练过程分析1.人脸检测分类器的组成2.弱分类器和强分类器各是什么?3.弱如何变强分类器?cart作用adaboost作用详述训练过程 haar+adaboost+cart各级结构    haar+adaboost+cart训练过程分析图:    ...

2018-06-09 22:07:36

阅读数 603

评论数 0

【人脸识别6】用haar+adaboost训练自己的人脸检测器

【人脸识别6】用haar+adaboost训练自己的人脸检测器 【1. 准备样本】        1.将ORL数据库中的400张人脸储存到一个文件夹下positive_samples        2.生成索引文件posdata.dat        3.生成vec文件【2.训练分类器】【3.测试...

2018-06-06 20:35:38

阅读数 1978

评论数 3

【机器学习】神经网络介绍

【深度学习】神经网络介绍神经元激活函数感知机与多层网络误差反向传播 参考:周志华《机器学习》         "神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应" [Kohonen, 1988]...

2018-05-28 15:51:36

阅读数 2885

评论数 0

【opencv人脸识别5】通过建立模型(.xml文件)识别出你的脸

【opencv人脸识别5】通过建立模型(.xml文件)识别出你的脸    通过前面4节的opencv人脸识别的内容,我们已经较完整的实现了人脸识别。本节主要在前4节的基础上,通过构建人脸识别的模型,来进行人脸的预测分类。前4节内容及链接如下:    1.  【opencv人脸识别1】从图片中检测人...

2018-05-22 19:45:04

阅读数 5258

评论数 16

【opencv人脸识别3】从视频中识别出你的脸

【opencv人脸识别3】从视频中识别出你的脸第一节讲从图片中检测人脸,【opencv人脸识别一】从图片中检测人脸第二节讲从视频中检测人脸,【opencv人脸识别】从视频中检测人脸本节结合前面的内容,实现从视频中识别出你的脸。要想从视频中识别你的脸,大致流程如下:1.打开摄像头-&...

2018-05-21 20:54:54

阅读数 4127

评论数 3

【opencv人脸识别4】训练人脸模型

要进行人脸识别,需要一个人脸识别的模型,本实验采用PCA模型,取前20个主成分脸。训练人脸模型的流程图如下:                                  人脸模型训练的步骤如下:    1.前期准备工作,将所有的人脸样本和类别标签生成一个.csv文件。            ...

2018-05-21 20:54:44

阅读数 5875

评论数 8

【opencv人脸识别2】从视频中检测人脸

【opencv人脸识别】从视频中检测人脸    1.从视频中识别人脸和人的眼睛    2. 从视频中检测人脸、眼睛、鼻子、嘴巴    上一节,讲了如何从图片中检测人脸,这一节讲如何从视频中检测人脸。 在opencv自带的说明中便有从视频中检测人脸的例子,在..\opencv3_4\opencv\s...

2018-05-21 18:49:01

阅读数 3996

评论数 8

【opencv人脸识别1】从图片中检测人脸

【opencv人脸识别一】从图片中检测人脸 本系列主要讲述利用opencv实现人脸识别的相关知识,并给出实际代码。且循序渐进,由基础到复杂,从最基本的图片检测人脸到视频检测、识别人脸,再到较大型人脸数据模型训练、识别。下边是本系列的主要目录: 1.  【opencv人脸识别1】从图片中检测人脸...

2018-05-19 21:04:19

阅读数 6725

评论数 5

【工作计划】4.22-4.27

【工作计划】4.22-4.27 1. 翻译小论文初稿 (5天) 2. 了解英文文章中各部分的写法,学习它。 ------------------------------------- 认识有多深,呈现才有多深---------------------------------------...

2019-04-24 15:02:02

阅读数 50

评论数 1

【工作计划】4.15-4.21

【工作计划】4.15-4.21 1. 完成小论文初稿 (4天) 2.为大论文准备素材(2天) ------------------------------------- 认识有多深,呈现才有多深---------------------------------------------...

2019-04-17 09:20:09

阅读数 49

评论数 0

【工作计划】4.8-4.14

【工作计划】4.8-4.14 1. 阅读CNN文献 (2天) 2. 一遍阅读,一遍动手写小论文初稿(8-10天) 一共五大部分,摘要引言、cnn原理、cnn识别、实验、结论。 ------------------------------------- 认识有多深,呈现才有多深-...

2019-04-12 15:16:07

阅读数 62

评论数 1

【工作计划】4.1-4.7

【工作计划】4.1-4.7 1. 阅读CNN文献 (2天) 2. 调试新数据的CNN算法参数。(1-2天) 3. 阅读HRRP鲁棒性识别文献。(1-2天) 4. 构思自己的文章,中心点(创新点),结构,内容安排。(2天) 若有余力,可开始动手写初稿。 ------------...

2019-04-01 15:25:36

阅读数 67

评论数 0

【工作计划】3.22-3.30

【工作计划】3.22-3.30 1.调试dk-svd、lck-svd算法参数。(4天) 2.调试SRC算法参数。(2天) 3. 阅读CNN文献 (2天) 4.调试CNN算法参数。(2天) ------------------------------------- 认识有多深,呈现才有多深...

2019-03-21 22:14:09

阅读数 74

评论数 4

【工作计划】1.14-1.20

【工作计划】1.14-1.20 1. 学习平移不变特征提取方法,hu不变矩 (3天) 2. 编码实现hu不变矩提取,并运用到hrrp中。(2天) 3. 调试dksvd代码(2天) 4. 若有余力,调试lcksvd代码 (2天)   ---------------------------...

2019-01-14 15:33:00

阅读数 120

评论数 0

【工作计划】1.7-1.13

【工作计划】1.7-1.13 2019年第一个新年工作计划 1. 阅读eigenfaces  vs. fisherfaces,了解二者原理与区别。(2天) 2. 代码实现fisherHrrp recognition. (1天) 3. 阅读SVM文献 (2天) 4.实现 pca+svm/ ...

2019-01-06 21:51:30

阅读数 91

评论数 2

【工作计划】10.24-10.28

【工作计划】10.24-10.28 十月底这段时间主要是学习c++ 1. 学习c++链表 2. 自己学着写图书管理系统,运用链表知识,分析系统功能。   这是第9次工作计划,打好地基,一点一点实现进步! -------------------------------------    ...

2018-10-24 14:00:14

阅读数 113

评论数 0

【工作计划】8.10-8.25

【工作计划】8.10-8.25 1. 了解微多普勒基础知识 ,主要是读书、查文献。(2天) 2.  学习微多普勒,并研读matlab源代码,自己仿真波形 (3天) 3.  飞机的一维距离像仿真(1天),后续有时间要学习3-D仿真,目前先用2-D平面仿真 4.  学习螺旋桨飞机的微多普勒仿真...

2018-08-25 13:38:40

阅读数 137

评论数 0

【工作计划】7.24-7.29

【工作计划】7.24-7.29 1. 了解微多普勒基础知识 (1天) 2.  学习微多普勒第1章,并研读matlab源代码 (2天) 3.  飞机的一维距离像仿真(1天),后续有时间要学习3-D仿真,目前先用2-D平面仿真 4.  学习螺旋桨飞机的微多普勒仿真(2天)   这是第7次工...

2018-07-24 13:54:08

阅读数 116

评论数 0

【工作计划】7.9-7.15

【工作计划】7.9-7.15 1.【机器学习】logistic回归原理分析及python实现 (2天) 2. 【机器学习】k-means聚类原理及python实现 (3天)   这是第6次工作计划,打好地基,一点一点实现进步!加油! 如果你贪快,就会在后边被自己蠢哭,最聪明的办法就是,老...

2018-07-24 13:42:50

阅读数 113

评论数 0

【机器学习】k-means聚类原理及python实现

【机器学习】k-means聚类原理及python实现 1、k-means原理 2、改进的kmenas-------二分k-means 3、实例----对地图上的点进行聚类               本节完整代码可戳:https://github.com/LisaPig/machineLe...

2018-07-14 22:25:38

阅读数 339

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭