花书中dropout的介绍

Dropout

    dropout可以被认为是继承大量深层神经网络的使用bagging方法。bagging需要训练多个模型,如果每个模型都是很大的神经网络的话是不切实际的。dropout的目标是在指数级数量的神经网络上近似bagging过程。

bagging和dropout的差异

    训练不太一样,bagging的训练,所有的模型都是独立的;在dropout中所有模型共享参数,每个模型继承大神经网络参数的不同子集(共享参数也使得每个子模型都有很好的参数设定)。其他两者之间没有太多区别,训练中遇到的训练集也都是有放回采样的原始训练集的一个子集。

dropout的特性    

    1.  关于推断,权重比例推断比蒙特卡洛近似推断效果更好。dropout的计算开销比其他正则化方法更小。

    2. dropout不限制适用的模型和训练过程。

    3. 只有少量样本时dropout不会有效,,它是为了减少模型的容量。

    4. 对于线性回归来说,dropout等同于每个特征都有L2的权重衰减,其他模型不等同。

dropout的解释

    1.通过随机行为训练网络并平均多个随机决定进行预测,实现了一种参数共享的bagging。

    2.dropout共享隐藏单元,要求每个隐藏单元必须表现良好。

    3.dropout强大的大部分原因是来自施加到隐藏单元的掩码噪声,且噪声是乘性的(更加具有鲁棒性)。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值