论文
木子木木峰
这个作者很懒,什么都没留下…
展开
-
RGB-D Salient Object Detection with Cross-Modality Modulation and Selection学习笔记
** 一、本文要解决的问题 1.有效的整合RGB图像和其对应的深度图的互补信息。 2.如何获取更多显著性特征。** ** 二、解决方案 ** 1.通过深度特征优先创建交叉调节特征(cmFM)模型提高特征表现。 2.用可适应的特征选择(AFS)选择显著性特征,并且抑制次级特征。 3.用显著性引导位置边缘注意模组(sg-PEA)提高注意。 将特征调节机制和注意力机制想配合。 ** 三、新的技术 ** ...原创 2020-09-29 14:47:38 · 567 阅读 · 0 评论 -
Asymmetric Two-Stream Architecture for Accurate RGB-D Saliency Detection学习笔记
一、背景 ** 1.对某些复杂情况的RGB图像特征难以鉴别。 appearance features in RGB data are less predictive to some challenging scenes 2.RGB图像的复杂特征会使对称两步流模型“overlooked”,从而产生大量损失。 a symmetric two-stream network may overlook the inherent differences of RGB and depth data. exist原创 2020-09-23 16:52:12 · 449 阅读 · 0 评论 -
Contrast Prior and Fluid Pyramid Integration for RGBD Salient Object Detection学习笔记
知识储备 RGB-D(深度图像) 深度图像 = 普通的RGB三通道彩色图像 + Depth Map Depth Map(深度图)是包含与视点的场景对象的表面的距离有关的信息的图像或图像通道。其中,Depth Map 类似于灰度图像,只是它的每个像素值是传感器距离物体的实际距离。通常RGB图像和Depth图像是配准的,因而像素点之间具有一对一的对应关系。 图像深度 图像深度 是指存储每个像素所用的位数,也用于量度图像的色彩分辨率。 图像深度 确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素原创 2020-09-11 14:36:36 · 492 阅读 · 0 评论