动态多目标优化算法基准测试问题JY

本文介绍了多目标优化中的动态特性,探讨了JY基准测试函数系列,包括随时间变化的POFs和POSs,以及它们对算法性能的挑战。通过将DMOPs分为四类,作者详细描述了各类问题的特点和基准生成方法。
摘要由CSDN通过智能技术生成

论文题目:Evolutionary Dynamic Multiobjective Optimization: Benchmarks and Algorithm Comparisons

进化动态多目标优化:基准测试和算法比较(Shouyong Jiang and Shengxiang Yang, Senior Member, IEEE)IEEE TRANSACTIONS ON CYBERNETICS, VOL. 47, NO. 1, JANUARY 2017

刚开始学习多目标优化算法,不作商业用途,如果有不正确的地方请指正!

个人总结:

        在学习动态多目标优化算法的过程中,发现platemo上关于DMOPs的相关测试基准问题就只有一个FDA,而FDA问题当中的pareto前沿的变化都是同形状的迁移,基于此看了此文章基准测试问题为(JY)

JY基准测试函数
函数名称函数比较
JY1JY1是一个第一类问题,其中POS随时间有规律地变化.
JY2 JY2为具有动态POFs和POSs的II型问题。POS随时间变化,目标矢量在几种模式之间振荡
JY3JY3引入了任意两个决策变量之间的时变非单调依赖关系,随着时间的推移,解的密度也会发生变化
JY4 JY4构造了一个断开的POF分段数随时间变化的情况,此时POF是不连续
JY5JY5不存在混合型POF,为III型问题。它的POF非常简单,从凸几何变为凹几何
JY6JY6其中不仅局部最优解的数量随时间变化,而且POS也是动态移动的
JY7JY7考虑了POS的偏移、多模态性和POF的整体形状。与JY6不同的是,JY7的局部最优解的数量保持不变,并且由于环境变化,POF的整体形状可以是凹的或凸的
JY8JY8中,POS保持静态,但POF随时间变化,JY8的动态性在于其POF整体形状的变化,其中POF的几何形状和混合段数随时间变化。
JY9JY9为从类型Ⅰ到类型Ⅱ,再到类型Ⅲ的循环切换
JY10JY10每个时间窗口的DMPOS类型不一样

相关工作

根据POF和POS的动力学特征,将DMOPs分为四类:

  • I型:POS随时间变化而POF保持不变。
  • Ⅱ型:POF和POS均随时间变化。
  • 第三类:POF随时间变化而POS保持不变。
  • 第四类:虽然目标函数或约束条件可能随时间变化,但POF和POS都保持不变。

基准问题

A.基准生成器

整体上基于以下框架:

其中 0 ≤ h(xI) ≤ 1, 并且xI和xII是决策向量x的子向.

 At和Wt是控制POF局部形状的两个参数,通过调整At的曲率和Wt控制POF上混合凸凹段的数量,较大的Wt值会导致POF出现不连通区域,而较小的Wt值会产生连续的POF。

α t和β t( αt > 0 , βt > 0)是控制POF整体形状的参数:当α t > 1且β t > 1或α t < 1且β t < 1时,整体形状分别为凸形或凹形;当α t = βt = 1时,整体形状为线性;否则,整体形状是混合的。

g( xII , t)是一个非负函数,阻碍算法向真正的POF收敛,g( xII , t)的最小值为零。

通过不同的参数调节得到不同的POF曲线,例子如下图所示:

 

B.检测实例

JY1

        JY1是一个第一类问题,其中POS随时间有规律地变化。令xi = G ( t ),则∂xi∈Xii,它主要测试一个算法的收敛速度和反应性,快速收敛的算法可以很容易地解决这个问题。

参数定义如下:

JY2

        JY2为具有动态POFs和POSs的II型问题。POS随时间变化,目标矢量在几种模式之间振荡。因此,如下图所示,POF随着时间而改变其形状。

 

 

JY3

        JY3引入了任意两个决策变量之间的时变非单调依赖关系,随着时间的推移,解的密度也会发生变化。因此,JY3不仅评估了变量链接的效果,而且在动态环境中测试了算法的多样性性能。

 

JY4

        JY4构造了一个断开的POF分段数随时间变化的情况,此时POF是不连续的。这个问题可能会对一些算法提出挑战,以找到所有的POF组件。


JY5

        JY5不存在混合型POF,为III型问题。它的POF非常简单,从凸几何变为凹几何,如图所示


JY6

        JY6其中不仅局部最优解的数量随时间变化,而且POS也是动态移动的。JY6的POF保持稳定,

JY7

        JY7考虑了POS的偏移、多模态性和POF的整体形状。与JY6不同的是,JY7的局部最优解的数量保持不变,并且由于环境变化,POF的整体形状可以是凹的或凸的。

JY8

        JY8中,POS保持静态,但POF随时间变化,JY8的动态性在于其POF整体形状的变化,其中POF的几何形状和混合段数随时间变化。

JY9

在本文中,我们提出了这样一个问题,即从类型Ⅰ到类型Ⅱ,再到类型Ⅲ的循环切换。从技术上讲,这类问题从整个变革时期来看,在宏观上属于第二类问题。

ρt表示类型变化的频率,建议ρt = 5,表示当前类型持续5种时间窗口。如果σ = 0,JY9是一个第一类问题。若σ = 1,则JY9属于第Ⅱ类,若σ = 2,则JY9为第Ⅲ类问题

JY10

JY10比较具有挑战JY10的定义与JY9几乎相同,然而,除了控制简单整体POF形状的两个与时间相关的参数α t和β t外,JY10引入一个随机整数R∈[ 1、3],每隔ρ t个时间窗口将问题转换为随机类型的变化

算法实现

未完待续

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值