剑指offerJZ28:数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字。例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}。由于数字2在数组中出现了5次,超过数组长度的一半,因此输出2。如果不存在则输出0。
这道题是在面试时常问的一道题,有多种解法,我们分别看一下;
方法一:利用map
利用map的key -value模型来存放arr[i]和相对应出现的次数,最后用次数去跟数组长度一半去比较,大于则就是;比如1,2,3,2,2,2,5,4,2;就是1出现一次、2出现5次、3.4.5各出现一次;返回的就是2;
public static int solution1(int[] arr){
//利用map的key value模型来存放arr[i]和相对应出现的次数
HashMap<Integer,Integer> map=new HashMap<>();
for(int i=0;i<arr.length;i++){
if(map.containsKey(arr[i])){
map.put(arr[i],map.get(arr[i])+1);//已经存在就给value加1
}
else{
map.put(arr[i],1);
}
}
for(Map.Entry<Integer,Integer> entry:map.entrySet()){
if(entry.getValue()>arr.length/2){
return entry.getKey();
}
}
return 0;
}
方法二:排序求中间值
出现的次数超过长度一半,那给数组排序以后,它一定处在最中间的位置;比如1,2,3,2,2,2,5,4,2排完序是1,2,2,2,2,2,3,4,5,;接下来去统计数组中跟arr[mid]值一样的元素,相等count++;如果count的值大于mid,则说明存在输出,否则返回0;
public static int solution2(int[] arr){
//先对数组排序,如果这个数存在,那它一定在arr[mid]的位置,
Arrays.sort(arr);
int count=0;
int mid=arr.length/2;
for(int i=0;i<arr.length;i++){
if(arr[i]==arr[mid]){
count++;
}
}
if(count>mid){//出现的次数超过mid,则返回它;
return arr[mid];
}
return 0;
}
方法三:抵消法
将target和其他元素进行抵消,由于target出现的次数大于别的元素,所以最后剩下的就是我们要找的;在遍历数组的时候保存两个值:数组中的一个元素(target) 和 该元素出现的次数(times)。当我们遍历到下一个元素的时候,如果下一个元素和我们之前保存的元素相等,则次数加1,如果下一个元素和我们之前保存的元素不相等,则次数减1。如果次数为零,我们需要保存下一个元素,并且把次数重设为1。由于目标元素出现的次数比其它所有元素出现的次数之和还要多,所以目标元素肯定是最后一次把次数设为1时对应的元素。
*
public static int solution3(int[] arr){
//抵消法:将target和其他元素进行抵消,由于target出现的次数大于别的元素,所以最后剩下的就是我们要找的
//1,4,5,7,2,4,5,4,6,4,5,4,4,4,4
int target=arr[0];//target先设为arr[0];
int times=1;
for(int i=0;i<arr.length;i++){
if(times==0){//重新设置
target=arr[i];
times=1;
}
else
{
if(arr[i]==target){
times++;
} else {
times--;
}
}
}
return target;
}
方法四:利用快排的思想
使用partition()方法获取基准元素的下标。若基准元素的下标为length/2,则基准元素是数组的中位数,即基准元素就是目标元素。若基准元素的下标大于length/2,则数组的中位数位于基准元素的左边。若基准元素的下标小于length/2,则数组的中位数位于基准元素的右边。
public static int solution4(int[] arr){
int low=0;
int high=arr.length-1;
int mid=(high-low)/2;
int index=partition(arr,low,high);
while(index!=arr.length/2){
if(index<arr.length/2){
low=index+1;
index=partition(arr,low,high);
}
else{
high=index-1;
index=partition(arr,low,high);
}
}
int num=arr[index];
int times=0;
for(int i=0;i<arr.length;i++){
if(arr[i]==num){
times++;
}
}
if(times*2>arr.length){
return num;
}
return 0;
}
public static int partition(int[] arr,int low,int high){
int key=arr[low];
while(low<high){
while(low<high&&arr[high]>=key){
high--;
}
int temp=arr[low];
arr[low]=arr[high];
arr[high]=temp;
while(low<high&&arr[low]<=key){
low++;
}
temp=arr[low];
arr[low]=arr[high];
arr[high]=temp;
}
return low;
}
方法五:target-other>=1
和方法三思想基本一致,因为这个数字出现次数超过数组长度的一半,所以目标数字的个数 减去其他数字的个数总和 一定是大于等于1的,当我们遇到目标值时+1,否则-1,当count为0时重新设置目标值,最后记录的位置一定是目标数字
public static int solution(int[] arr){
int count=0;
int aws=0;
for(int i=0;i<arr.length;i++){
if(count==0){
aws=arr[i];
}
if(arr[i]==aws){
count++;
} else {
count--;
}
}
return aws;
}