Description
如图,A 点有一个过河卒,需要走到目标 B 点。卒行走规则:可以向下、或者向右。同时在棋盘上的任一点有一个对方的马(如上图的C点),该马所在的点和所有跳跃一步可达的点称为对方马的控制点。例如上图 C 点上的马可以控制 9 个点(图中的P1,P2 … P8 和 C)。卒不能通过对方马的控制点。
棋盘用坐标表示,A 点(0,0)、B 点(n,m)(n,m 为不超过 20 的整数,并由键盘输入),同样马的位置坐标是需要给出的(约定: C<>A,同时C<>B)。现在要求你计算出卒从 A 点能够到达 B 点的路径的条数。
Input
B点的坐标(n,m)以及对方马的坐标(X,Y){不用盘错}
Output
一个整数(路径的条数)。
Sample Input
6 6 3 2
Sample Output
17
解题思路:因为要到达棋盘上的一个点,只能从左边过来或是从上边过来,所以根据加法原理,到达某一点的路径数目等于到达其相邻的上点和左点的路径数目之和,因此我们可以使用逐列递推的方法来求出从起点到终点的路径数目。递推关系式为:f[i,j]=f[i-1,j]+f[i,j-1],递推边界有四个:f[i,j]=0,f[i,0]=f[i-1,0],f[0,j]=f[0,j-1],f[0,0]=1。
程序:
const
dx:array[1..8]of shortint=(-2,-1,1,2,2,1,-1,-2);
dy:array[1..8]of shortint=(1,2,2,1,-1,-2,-2,-1);
var
a:array[-1..21,-1..21]of int64;
b:array[-1..21,-1..21]of shortint;
n,m,i,j,x,y:longint;
begin
readln(n,m,x,y);
for i:=0 to n do
for j:=0 to m do
b[i,j]:=1;
if b[0,0]=1 then a[0,0]:=1;
b[x,y]:=0;
for i:=1 to 8 do
b[x+dx[i],y+dy[i]]:=0;
for i:=1 to m do
if b[0,i]=1 then a[0,i]:=a[0,i-1];
for i:=1 to n do
if b[i,0]=1 then a[i,0]:=a[i-1,0];
for i:=1 to n do
for j:=1 to m do
if b[i,j]=1 then a[i,j]:=a[i-1,j]+a[i,j-1];
writeln(a[n,m]);
end.