机器学习|深度学习|重磅推出---全网最全Numpy简明教程(一)

在这里插入图片描述
本教程面向初学者的Numpy简明教程,学好Numpy才能在深度学习、机器学习、AI等领域进军,如果感觉此文不错,欢迎和博主交流探讨

1、Numpy介绍

在这里插入图片描述
Numeric Python 数字的Python

NumPy系统是Python的一种开源的数值计算扩展

  1. 一个强大的N维数组对象ndarray
  2. 拥有比较成熟的函数库
  3. 用于整合C/C++和Fortran代码的工具包
  4. 可以实现线性代数、傅里叶变换和随机数生成函数
  5. Numpy和稀疏矩阵运算包Scipy配合使用更加强大

Numpy主要用于数组的计算,主要应用于机器学习和深度学习领域,所有我们就有必要了解AI的本质是什么

在这里插入图片描述

现在的AI模型本质上是在进行数学运算
数学运算中主要是在做矩阵运算
在计算机中,最擅长做计算
矩阵的计算比较快,我们可以通过一定的方法,把生活中的事物,抽象成矩阵

Numpy中提供了一种数据类型:ndarray数组,nd—>n dimension n个维度
当然,在Python中,列表也是可以表示多维数组
但是,Python中列表存在缺陷

  1. 查询速度慢
    在这里插入图片描述

  2. 占用空间大

# 导入numpy库,并查看numpy版本  
# 为什么需要关注版本信息?  因为有些情况下,版本会出现不兼容情况  
import numpy as np  
print(np.__version__)  
  
# __sizeof__是Python提供的魔术方法,可以查看对象的占用内存  
lst1 = [i for i in range(10000)]  
print(lst1.__sizeof__())  
  
nd1 = np.array([i for i in range(10000)])  
print(nd1.__sizeof__())

在这里插入图片描述
单下划线开头:一般用于类内的私有属性或方法
双下划线开头:一般为Python内置的属性,不推荐你自己的代码使用双下划线开头
双下划线开头和单下划线结尾:Python内置的魔术方法或属性


2、创建ndarray数组

在创建ndarray数组之前,需要先导入Numpy这个包

import numpy as np  
print(np.__version__)  # 查看版本信息

创建ndarray数组可以使用:

  1. 列表
  2. routines函数 常规函数

2.1、np.array

在这里插入图片描述

# 导入numpy库,并查看numpy版本  
# 为什么需要关注版本信息?  因为有些情况下,版本会出现不兼容情况  
import numpy as np  
print(np.__version__)  
  
# 参数为一个列表  
nd1 = np.array([1, 2, 3])  
  
print(nd1, type(nd1))  
  
# 将ndarray转换为list  
lst1 = nd1.tolist()  
print(lst1, 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值