Python数据分析
文章平均质量分 79
KirinLee_01
盛开的不是樱花,而是对你满山遍野的爱意。
展开
-
【Python数据分析】pandas索引介绍
一、pandas的索引1、索引引入import pandas as pdimport numpy as npdf = pd.DataFrame({'语文':[87,79,67,92], '数学':[93,89,80,77], '英语':[90,80,70,75]}, index=['张三', '李四', '王五', '赵六'])se = pd.Series(np.arange(6),in原创 2021-05-19 09:43:12 · 2574 阅读 · 0 评论 -
Python数据分析——pandas数据结构(DataFrame)
一、pandas数据结构–DataFrameDataFrame 是表格型的数据结构,每列值的数据类型可以不同,也可以相同DataFrame 常用于二维数据。DataFrame 的属性: values,index,columns,dtypes二、创建DataFrame对象1.格式:pandas.DataFrame(data[,index[,columns]])参数说明:data:是输入给DataFrame构造器的数据 index:是DataFrame对象中行索引的标签。 columns:原创 2021-05-08 09:15:52 · 5209 阅读 · 0 评论 -
Python数据分析科学库——Pandas(统计分析与决策)
一、Pandas它是选择以NumPy为基础进行设计,在数据分析中Pandas和NumPy这两个模块经常是一起使用。Pandas是数据处理和数据分析首选库。Pandas提供了大量标准数据模型和高效操作大型数据集所需要的函数和方法,是使得Python能够成为高效且强大的数据分析工具的重要因素之一。使用Pandas库时,需要导入它并命名别名为pd:import pandas as pd 二、pandas数据结构1)Series,带标签的一维数组;2)DatetimeIndex,时间序原创 2021-04-28 09:33:20 · 1147 阅读 · 1 评论 -
Python科学工具——matplotlib可视化(柱状图、直方图、饼图)
一、绘制柱形(状)图柱状图(bar chart),是一种以长方形的长度为变量的表达图形的统计报告图,由一系列高度不等的纵向条纹表示数据分布的情况,用来比较两个或两个以上的价值(不同时间或者不同条件)。或者说,指不同事物之间或同一事物在不同时间下的优劣等的对照,能够比较清晰地反映数据的差异,一般情况下用来反映分类项目之间的比较。pyplot中绘制柱状图的函数为bar,其语法格式.plt.bar(x, height, width=0.8, bottom=None, *, align=‘center’,原创 2021-04-14 09:46:38 · 5998 阅读 · 0 评论 -
Python-----采用matplotlib库数据可视化
一、数据可视化数据可视化是关于图形或表格的数据展示。旨在借助于图形化手段,清晰有效地传达和沟通信息。有研究表明,人类大脑接收或理解图片的速度要比文字快6万倍,所以再整齐的数据,再好的表格,也不抵一张图来的简单、快捷。在数据分析中,数据可视化是一个很重要的部分。数据可视化不仅是展示数据分析的结果,而且更重要的是利用数据可视化来进行数据分析,如发现数据样本中的异常值,观察数据的分布,寻找数据之间的相关性等。在Python中数据可视化工具,应用性较好的数据可视化工具有Matplotlip、Seaborn、原创 2021-04-11 10:51:41 · 1490 阅读 · 1 评论 -
Python数据分析:使用NumPy读写文本文件
一、使用NumPy读写文本文件在数据分析中,经常需要从文件中读取数据或将数据写入文件,常用的存储文件的格式有文本文件、CSV格式文件、二进制格式文件和多维数据文件等。1.将1维或2维数组写入TXT文件或CSV格式文件 在NumPy中,使用savetxt()函数可以将1维或2维数组写入后缀名为txt或csv的文件.函数格式为:**numpy.savetxt(fname,array,fmt='%.18e',delimiter=None,newline='\n', header='', footer=''原创 2021-04-04 12:54:00 · 8089 阅读 · 0 评论