【bzoj1036】树的统计 树链剖分/LCT

10 篇文章 0 订阅
6 篇文章 0 订阅

AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=1036

【题解】

看到题目,发现是树剖一眼题,所以就秒掉了。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
#define FILE "read"
#define MAXN 30010
#define INF 1000000000
#define up(i,j,n) for(int i=j;i<=n;++i)
#define dn(i,j,n) for(int i=j;i>=n;--i)
#define cmax(a,b) a=max(a,b)
#define cmin(a,b) a=min(a,b)
namespace INIT{
	char buf[1<<15],*fs,*ft;
	inline char getc(){return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;}
	inline int read(){
		int x=0,f=1;  char ch=getchar();
		while(!isdigit(ch))  {if(ch=='-')  f=-1;  ch=getchar();}
		while(isdigit(ch))  {x=x*10+ch-'0';  ch=getchar();}
		return x*f;
	}
}using namespace INIT;
struct node{int y,next;}e[MAXN*2];
int n,m,z,len,Link[MAXN],size[MAXN],son[MAXN],w[MAXN],f[MAXN],top[MAXN],deep[MAXN],sum[MAXN*8],maxx[MAXN*8];
void insert(int x,int y){e[++len].next=Link[x];Link[x]=len;e[len].y=y;}
void dfs(int x){
	size[x]=1;  son[x]=0;
	for(int i=Link[x];i;i=e[i].next){
		if(e[i].y==f[x])  continue;
		deep[e[i].y]=deep[x]+1;  f[e[i].y]=x;
		dfs(e[i].y);  size[x]+=size[e[i].y];
		if(size[e[i].y]>size[son[x]])  son[x]=e[i].y;
	}
}
void dfs(int x,int temp){
	w[x]=++z;  top[x]=temp;
	if(son[x])  dfs(son[x],temp);
	for(int i=Link[x];i;i=e[i].next)
		if(e[i].y!=son[x]&&e[i].y!=f[x])  dfs(e[i].y,e[i].y);
}
void relord(int p) {sum[p]=sum[p<<1]+sum[p<<1|1]; maxx[p]=max(maxx[p<<1],maxx[p<<1|1]);}
void updata(int p,int l,int r,int x,int v){
	if(x>r||x<l)  return;
	if(l==r)  {maxx[p]=sum[p]=v; return;}
	int mid=(l+r)>>1;
	updata(p<<1,l,mid,x,v);  updata(p<<1|1,mid+1,r,x,v);
	relord(p);
}
int findmax(int p,int l,int r,int x,int y){
	if(x>r||y<l)  return -INF;
	if(x<=l&&y>=r)  return maxx[p];
	int mid=(l+r)>>1;
	return max(findmax(p<<1,l,mid,x,y),findmax(p<<1|1,mid+1,r,x,y));
}
int findsum(int p,int l,int r,int x,int y){
	if(x>r||y<l)  return 0;
	if(x<=l&&y>=r)  return sum[p];
	int mid=(l+r)>>1;
	return findsum(p<<1,l,mid,x,y)+findsum(p<<1|1,mid+1,r,x,y);
}
int askmax(int x,int y){
	int f1=top[x],f2=top[y],temp(-INF);
	while(f1!=f2){
		if(deep[f1]<deep[f2])  swap(f1,f2),swap(x,y);
		cmax(temp,findmax(1,1,z,w[f1],w[x]));
		x=f[f1];  f1=top[x];
	}
	if(deep[x]>deep[y])  swap(x,y);
	cmax(temp,findmax(1,1,z,w[x],w[y]));
	return temp;
}
int asksum(int x,int y){
	int f1=top[x],f2=top[y],temp(0);
	while(f1!=f2){
		if(deep[f1]<deep[f2])  swap(f1,f2),swap(x,y);
		temp+=findsum(1,1,z,w[f1],w[x]);
		x=f[f1];  f1=top[x];
	}
	if(deep[x]>deep[y])  swap(x,y);
	temp+=findsum(1,1,z,w[x],w[y]);
	return temp;
}
int main(){
	freopen(FILE".in","r",stdin);
	freopen(FILE".out","w",stdout);
	n=read();
	up(i,1,n-1) {int x=read(),y=read(); insert(x,y); insert(y,x);}
	dfs(1);  dfs(1,1);
	up(i,1,n) {int x=read(); updata(1,1,z,w[i],x);}
	m=read();
	up(i,1,m){
		char ch[10];  scanf("%s",ch);  int x=read(),y=read();
		if(ch[0]=='C') updata(1,1,z,w[x],y);
		else if(ch[1]=='M') printf("%d\n",askmax(x,y));
		else printf("%d\n",asksum(x,y));
	}
	return 0;
}



然后我发现这题被贴上了LCT的标签,于是去搞了一发LCT,比树剖要慢一些。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<ctime>
#include<cmath>
#include<algorithm>
using namespace std;
#define FILE "read"
#define MAXN 30010
#define INF 1000000000
#define up(i,j,n) for(int i=j;i<=n;++i)
#define dn(i,j,n) for(int i=j;i>=n;--i)
namespace INIT{
	char buf[1<<15],*fs,*ft;
	inline char getc(){return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;}
	inline int read(){
		int x=0,f=1;  char ch=getchar();
		while(!isdigit(ch))  {if(ch=='-')  f=-1;  ch=getchar();}
		while(isdigit(ch))  {x=x*10+ch-'0';  ch=getchar();}
		return x*f;
	}
}using namespace INIT;
int n,m,v[MAXN],X[MAXN],Y[MAXN];
namespace Link_Cut_Tree{
	int maxx[MAXN],sum[MAXN],f[MAXN],q[MAXN],vis[MAXN],son[MAXN][2];
	bool get(int x){return son[f[x]][1]==x;}
	bool isroot(int x){return (f[x]==0||(son[f[x]][0]!=x&&son[f[x]][1]!=x));}
	void updata(int x){
		maxx[x]=max(maxx[son[x][0]],max(maxx[son[x][1]],v[x]));
		sum[x]=sum[son[x][0]]+sum[son[x][1]]+v[x];
	}
	void pushdown(int x){
		if(vis[x]){
			swap(son[x][0],son[x][1]);
			vis[son[x][0]]^=1;  vis[son[x][1]]^=1;
			vis[x]=0;
		}
	}
	void rotate(int x){
		int y=f[x],z=f[y],which=get(x);
		if(!isroot(y))  son[z][son[z][1]==y]=x;
		son[y][which]=son[x][which^1];  f[son[y][which]]=y;
		son[x][which^1]=y;  f[y]=x;  f[x]=z;
		updata(y);  updata(x);
	}
	void splay(int x){
		int top(0);  q[++top]=x;
		for(int i=x;!isroot(i);i=f[i])  q[++top]=f[i];
		dn(i,top,1)  pushdown(q[i]);
		for(int y=f[x];!isroot(x);rotate(x),y=f[x])
			if(!isroot(y))  rotate(get(x)==get(y)?y:x);
	}
	void access(int x){for(int temp(0);x;temp=x,x=f[x])splay(x),son[x][1]=temp,updata(x);}
	void reverse(int x){access(x);splay(x);vis[x]^=1;}
	void linkk(int x,int y){reverse(x);f[x]=y;}
	void split(int x,int y){reverse(x);access(y);splay(y);}
}
int main(){
	freopen(FILE".in","r",stdin);
	freopen(FILE".out","w",stdout);
	using namespace Link_Cut_Tree;
	n=read();  maxx[0]=-INF;
	up(i,1,n-1)  X[i]=read(),Y[i]=read();
	up(i,1,n)  v[i]=read(),sum[i]=maxx[i]=v[i];
	up(i,1,n-1)  linkk(X[i],Y[i]);
	m=read();
	up(i,1,m){
		char ch[10];  scanf("%s",ch); int x=read(),y=read();
		if(ch[1]=='H')  splay(x),v[x]=y,updata(x);
		else if(ch[1]=='M')  split(x,y),printf("%d\n",maxx[y]);
		else split(x,y),printf("%d\n",sum[y]);
	}
}




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值